과제정보
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019M2D2A2048296).
참고문헌
- Bunn, M. G., Weeks, J., Holdren, J. P., MacFarlane, A. M., Pickett, S. E., Suzuki, A., and Suzuki, T., 2001, Interim Storage of Spent Nuclear Fuel: A Safe, Flexible, and Cost-Effective Approach to Spent Fuel Management.
- Romanato, L. S., 2011, Advantages of dry hardened cask storage over wet storage for spent nuclear fuel.
- Feng, Z. (Ed.)., 2005, Processes and mechanisms of welding residual stress and distortion. Elsevier.
- Lima, A. S., Nascimento, A. M. D., Abreu, H. F. G. D., and de Lima-Neto, P., 2005, "Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321 and 347". J. Mater. Sci., Vol. 40, No. 1, pp. 139-144. doi:https://doi.org/10.1007/s10853-005-5699-9
- Weglowski, M. S., Blacha, S., and Phillips, A., 2016, Electron beam welding-techniques and trends-review. Vacuum, Vol. 130, pp. 72-92. doi:https://doi.org/10.1016/j.vacuum.2016.05.004
- Lam, P. S., Duncan, A. J., and Sindelar, R. L., 2019, "Crack growth rate and large plate demonstration of chloride-induced stress corrosion cracking in spent nuclear fuel storage canisters," U.S. Savannah River Site, Aiken, SRNL-STI-2019-00561.
- Liu, C., Zhang, J., Wu, B., and Gong, S., 2012, "Numerical investigation on the variation of welding stresses after material removal from a thick titanium alloy plate joined by electron beam welding." Materials and Design, Vol. 34, pp. 609-617. doi: https://doi.org/10.1016/j.matdes.2011.05.014
- Cao, J., Gharghouri, M. A., and Nash, P, 2016, "Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates." J. Mater. Process. Tech., Vol. 237, pp. 409-419. doi:https://doi.org/10.1016/j.jmatprotec.2016.06.032
- Liu, C., Wu, B., and Zhang, J. X., 2010, "Numerical investigation of residual stress in thick titanium alloy plate joined with electron beam welding." Metall. Mater. Trans. B, Vol. 41, No. 5, pp. 1129-1138. doi:https://doi.org/10.1007/s11663-010-9408-y
- Cho, J. R., Conlon, K. T., and Reed, R. C., 2003, "Residual stresses in an electron beam weld of Ti-834: Characterization and numerical modeling." Metall. Mater. Trans. A, Vol. 34, No. 12, pp. 2935-2946. doi: https://doi.org/10.1007/s11661-003-0193-y
- Smith, D. J., Zheng, G., Hurrell, P. R., Gill, C. M., Pellereau, B. M. E., Ayres, K., ... and Kingston, E., 2014, "Measured and predicted residual stresses in thick section electron beam welded steels." Int. J. Press. Ves. Pip., Vol. 120, pp. 66-79. doi:https://doi.org/10.1016/j.ijpvp.2014.05.001
- Kundu, A., Bouchard, P. J., Kumar, S., Venkata, K. A., Francis, J. A., Paradowska, A., ... and Truman, C. E., 2013, "Residual stresses in P91 steel electron beam welds." Sci. Technol. Weld. Joi. Vol. 18, No. 1, pp. 70-75. doi:https://doi.org/10.1179/1362171812Y.0000000076
- Shen, X., Gao, K., and Dong, S., 2020, "Simulation and analysis of electron beam welding residual stress in thin-walled high-temperature alloy aeroengine structures." Int. J. Adv. Manuf. Tech. Vol. 107, No. 9, pp. 3953-3966. doi:https://doi.org/10.1007/s00170-020-05276-z
- Feng, G., Wang, Y., Luo, W., Hu, L., and Deng, D., 2021, "Comparison of welding residual stress and deformation induced by local vacuum electron beam welding and metal active gas arc welding in a stainless steel thick-plate joint." J. Mater. Res. Technol., Vol. 13, pp. 1967-1979. doi:https://doi.org/10.1016/j.jmrt.2021.05.105
- Lundback, A., and Runnemalm, H., 2005, "Validation of three-dimensional finite element model for electron beam welding of Inconel 718". Sci. Tech. Weld. Joi., Vol. 10, No. 6, pp. 717-724. doi:https://doi.org/10.1179/174329305X48347
- Ferro, P., Zambon, A., and Bonollo, F., 2005, "Investigation of electron-beam welding in wrought Inconel 706-experimental and numerical analysis." Mat. Sci. Eng. A-Struct., Vol. 392, No. 1-2, pp. 94-105. doi:https://doi.org/10.1016/j.msea.2004.10.039
- Li, Y., Zhao, Y., Li, Q., Wu, A., Zhu, R., and Wang, G., 2017, "Effects of welding condition on weld shape and distortion in electron beam welded Ti2AlNb alloy joints." Mater. Design, Vol. 114, pp. 226-233. doi: https://doi.org/10.1016/j.matdes.2016.11.083
- Song, T. K., Bae, H. Y., Kim, Y. J., Lee, K. S., and Park, C. Y., 2008, "Sensitivity analyses of finite element method for estimating residual stress of dissimilar metal multi-pass weldment in Nuclear power plant." Transactions of the Korean Society of Mechanical Engineers A, Vol. 32, No. 9, pp. 770-781. doi:https://doi.org/10.3795/KSME-A.2008.32.9.770
- Bae, H. Y., Kim, Y. J., Kim, J. H., Lee, S. H., Lee, K. S., and Park, C. Y., 2014, "Three-dimensional finite element welding residual stress analysis of penetration nozzles: I-sensitivity of analysis variables." Int. J. Press. Ves. Pip., Vol. 114, pp. 1-15. doi:https://doi.org/10.1016/j.ijpvp.2013.11.006
- Soh, N. H., Oh, G. J., Huh, N. S., Lee, S. H., Park, H. B., Lee, S. G., ... & Kim, Y. J. 2012. "Effect of Finite Element Analysis Parameters on Weld Residual Stress of Dissimilar Metal Weld in Nuclear Reactor Piping Nozzles." Trans. of the KPVP, Vol. 8, No. 1, pp. 8-18. doi:https://doi.org/10.20466/KPVP.2012.8.1.008
- sMokhtarishirazabad, M., Simpson, C., Kabra, S., Horne, G., Palmer, I., Moffat, A., ... and Mostafavi, M., 2021, "Evaluation of fracture toughness and residual stress in AISI 316L electron beam welds." Fatigue. Fract. Eng. M, Vol. 4, No. 8, pp. 2015-2032. doi:https://doi.org/10.1111/ffe.13472s
- Feng, G., Wang, Y., Luo, W., Hu, L., and Deng, D., 2021, "Comparison of welding residual stress and deformation induced by local vacuum electron beam welding and metal active gas arc welding in a stainless steel thick-plate joint." J. Mater. Res. Technol., Vol. 13, pp. 1967-1979. doi:https://doi.org/10.1016/j.jmrt.2021.05.105