DOI QR코드

DOI QR Code

Theoretical simulation on evolution of suspended sodium combustion aerosols characteristics in a closed chamber

  • Narayanam, Sujatha Pavan (Environmental Assessment Division, Safety, Quality & Resource Management Group, Indira Gandhi Centre for Atomic Research) ;
  • Kumar, Amit (Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research) ;
  • Pujala, Usha (Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research) ;
  • Subramanian, V. (Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research) ;
  • Srinivas, C.V. (Environmental Assessment Division, Safety, Quality & Resource Management Group, Indira Gandhi Centre for Atomic Research) ;
  • Venkatesan, R. (Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research) ;
  • Athmalingam, S. (Environmental Assessment Division, Safety, Quality & Resource Management Group, Indira Gandhi Centre for Atomic Research) ;
  • Venkatraman, B. (Environmental Assessment Division, Safety, Quality & Resource Management Group, Indira Gandhi Centre for Atomic Research)
  • Received : 2021.06.26
  • Accepted : 2021.12.20
  • Published : 2022.06.25

Abstract

In the unlikely event of core disruptive accident in sodium cooled fast reactors, the reactor containment building would be bottled up with sodium and fission product aerosols. The behavior of these aerosols is crucial to estimate the in-containment source term as a part of nuclear reactor safety analysis. In this work, the evolution of sodium aerosol characteristics (mass concentration and size) is simulated using HAARM-S code. The code is based on the method of moments to solve the integro-differential equation. The code is updated to FORTRAN-77 and run in Microsoft FORTRAN PowerStation 4.0 (on Desktop). The sodium aerosol characteristics simulated by HAARM-S code are compared with the measured values at Aerosol Test Facility. The maximum deviation between measured and simulated mass concentrations is 30% at initial period (up to 60 min) and around 50% in the later period. In addition, the influence of humidity on aerosol size growth for two different aerosol mass concentrations is studied. The measured and simulated growth factors of aerosol size (ratio of saturated size to initial size) are found to be matched at reasonable extent. Since sodium is highly reactive with atmospheric constituents, the aerosol growth factor depends on the hygroscopic growth, chemical transformation and density variations besides coagulation. Further, there is a scope for the improvement of the code to estimate the aerosol dynamics in confined environment.

Keywords

Acknowledgement

The authors would like to thank Library & Information Services Division, BARC, Mumbai for providing the HAARM-S code from NEA databank.

References

  1. S.C. Chetal, V. Balasubramaniyan, P. Chellapandi, P. Mohanakrishnan, P. Puthiyavinayagam, C.P. Pillai, S. Raghupathy, T.K. Shanmugham, C. Sivathanu Pillai, The design of the prototype fast breeder reactor, Nucl. Eng. Des. 236 (7-8) (2006) 852-860. https://doi.org/10.1016/j.nucengdes.2005.09.025
  2. S. Raghupathy, O.P. Singh, S. Govindarajan, S.C. Chet, S.B. Bhoje, Design of 500 MWe prototype fast breeder reactor, 2004. http://www.dae.gov.in/ni/nimar04/design.pdf.
  3. Baldev Raj, P. Chellapandi, P.R. Vasudeva Rao, Sodium Fast Reactors with Closed Fuel Cycle, CRC press, 2015.
  4. L.E. Herranz, M. Garcia, S. Morandi, Benchmarking LWR codes capability to model radionuclide deposition within SFR containments: an analysis of the Na ABCOVE tests, Nucl. Eng. Des. 265 (2013) 772-784, 2013. https://doi.org/10.1016/j.nucengdes.2013.05.030
  5. PFBR Preliminary safety analysis report, PFBR-PSAR, Chapter 15 Engineered Safety Features to Mitigate Accidents, 2004.
  6. R. Baskaran, V. Subramanian, B. Venkatraman, P. Chellapandi, Sodium aerosol studies for fast reactor safety, Energy Proc. 7 (2011) 660-665. https://doi.org/10.1016/j.egypro.2011.06.089
  7. Zhi-Gang Zhang, Kang-Wei Peng, Yan Huo, Ming Guo, Experimental study on combustion characteristics of sodium fire in a columnar flow, J. Nucl. Sci. Technol. 51 (2) (2014) 166-174. https://doi.org/10.1080/00223131.2014.854711
  8. V. Subramanian, K. Amit, U. Pujala, P.N. Sujatha, C.V. Srinivas, B. Singh, V. Gopalakrishnan, R. Ananthanarayan, A. Ashok Kumar, S. Krishna Kumar, S. Chandramouli, R. Baskaran, B.K. Nashine, B. Venkatraman, Studies on sodium aerosol dispersion experiments in open environment for Fast Reactor Safety, Ann. Nucl. Energy 125 (2019) 63-73. https://doi.org/10.1016/j.anucene.2018.10.043
  9. C.V. Srinivas, V. Subramanian, Kumar Amit, P. Usha, N. Sujatha, A. Bagavath Singh, P.T. Rakesh, R. Baskaran, B. Venkatraman, Modeling of atmospheric dispersion of sodium fire aerosols for environmental impact analysis during accidental leaks, J. Aerosol Sci. 137 (2019) 105432. November 2019. https://doi.org/10.1016/j.jaerosci.2019.105432
  10. A. Kumar, V. Subramanian, S. Krishnakumar, R. Baskaran, S. Chandramouli, B. Venkatraman, Characterisation of sodium aerosol in cover gas region of SILVERINA loop, Aerosol Air Qual. Res. 15 (2015) 1813-1822, https://doi.org/10.4209/aaqr.2014.09.0193.
  11. A. Kumar, V. Subramanian, S. Krishnakumar, R. Baskaran, S. Chandramouli, B. Venkatraman, Studies on geometrical effect on sodium aerosol characteristics in cover gas region, Aerosol Air Qual. Res. 16 (2016) 1832-1840, https://doi.org/10.4209/aaqr.2016.01.0010.
  12. C.V. Srinivas, R. Venkatesan, A simulation study of dispersion of air borne radionuclides from a nuclear power plant under a hypothetical accidental scenario at a tropical coastal site, Atmos. Environ. 39 (2005) 1497-1511. https://doi.org/10.1016/j.atmosenv.2004.11.016
  13. C.V. Srinivas, R. Venkatesan, K.M. Somayaji, A simulation study of short-range atmospheric dispersion for hypothetical air-borne effluent releases using different turbulent diffusion methods, Air Qual. Atmos. Health 2 (2009) 21-28, https://doi.org/10.1007/s11869-009-0030-6.
  14. J.A. Gieseke, K.W. Lee, L.D. Reed, HAARM-3 Users Manual, BMI-NUREG-1991, Bettelle Columbus Laboratories, Ohio, 1978.
  15. L.E. Herranz, M. Garcia, M.P. Kissane, In-containment source term in accident conditions in sodium-cooled fast reactors: data needs and model capabilities, Prog. Nucl. Energy 54 (2012) 138-149. https://doi.org/10.1016/j.pnucene.2011.07.003
  16. G. Bandini, S. Ederli, S. Perez-Martin, M. Haselbauer, W. Pfrang, L.E. Herranz, C. Berna, V. Matuzas, A. Flores, N. Girault, L. Laborde, ASTEC-Na code: thermal-hydraulic model validation and benchmarking with other codes, Ann. Nucl. Energy 119 (2018) 427-439. https://doi.org/10.1016/j.anucene.2017.12.016
  17. Mingzhou Yu, Yueyan Liu, Methods of Moments for Resolving Aerosol Dynamics. Aerosols - Science and Case Studies, IntechOpen, 2016.
  18. P.N. Sujatha, Kumar Amit, Soubhadra Sen, Usha Pujala, V. Subramanian, C.V. Srinivas, R. Baskaran, Experimental measurements and theoretical simulation of sodium combustion aerosol leakage through capillaries, Prog. Nucl. Energy 18 (January 2020) 103111, https://doi.org/10.1016/j.pnucene.2019.103111.
  19. Hans Haggblom, HAARM-S Users Manual, FILTRA-B 39/8, Studsvik Report, 1982. STUDSVIK/NR-82/198.
  20. A. Kumar, V. Subramanian, R. Baskaran, B. Venkatraman, Size evolution of sodium combustion aerosol with various RH%, Aerosol Air Qual. Res. 15 (2015) 2270-2276, https://doi.org/10.4209/aaqr.2014.09.0193.
  21. R. Baskaran, T.S. Selvakumaran, V. Subramanian, Aerosol test facility for fast reactor safety studies, Indian J. Pure Appl. Phys. 42 (2004) 873-878.
  22. U. Pujala, A. Kumar, P.N. Sujatha, V. Subramanian, C.V. Srinivas, R. Baskaran, Experimental studies in morphological properties of sodium combustion, fission product, structure material and mixed aerosol in closed chamber towards fast reactor safety, Ann. Nucl. Energy 130 (2019) 319-330. https://doi.org/10.1016/j.anucene.2019.02.044
  23. R. Anantha Narayanan, V. Subramanian, P. Sahoo, Jitendra Misra, Kumar Amit, R. Baskaran, B. Venkatraman, N. Murali, Experimental investigations on carbonation of sodium aerosol generated from sodium fire in the context of fast reactor safety, Ann. Nucl. Energy 80 (2015) 188-194. https://doi.org/10.1016/j.anucene.2014.12.033
  24. V. Subramanian, Kumar Amit, C.V. Srinivas, R. Baskaran, B. Venkatraman, Studies on chemical behavior of sodium fire aerosol in closed and open environment, in: Proceeding of IASTA, 2018, pp. 503-508.
  25. P.V. Kolobaeva, N.A. Mosunova, A.A. Sorokin, Verification of the AEROSOL/LM module in experiments on sodium burning in moist air, Atom. Energy 127 (6) (2019). April, 2020 (Russian Original Vol. 127, No. 6, December, 2019).
  26. V. Subramanian, R. Baskaran, Initial size distribution of sodium combustion aerosols, Nucl. Technol. 160 (2007) 308-313. https://doi.org/10.13182/nt07-a3901