Acknowledgement
This study was funded by Hifeelworld, Inc. We would like to thank Editage (www.editage.co.kr) for English language editing.
References
- Baddeley, A. D. & Hitch G. (1974). Psychology of learning and motivation; Cambridge: Academic Press. Working Memory, 8, 47-89. https://doi.org/10.1016/S0079-7421(08)60452-1
- Clark, C. M., Lawlor-Savage, L., & Goghari, V. M. (2017). Working memory training in healthy young adults: Support for the null from a randomized comparison to active and passive control groups. PLoS One, 12(5), e0177707. https://doi.org/10.1371/journal.pone.0177707
- Lamprecht, R. & LeDoux, J. (2004). Structural plasticity and memory. Nature Reviews Neuroscience, 5(1), 45-54. https://doi.org/10.1038/nrn1301
- Fukushima-Nakayama, Y., Ono, T., Hayashi, M., Inoue, M., Wake, H., Ono, T., et al. (2017). Reduced mastication impairs memory function. Journal of Dental Research, 96(9), 1058-1066. https://doi.org/10.1177/0022034517708771
- Krishnamoorthy, G., Narayana, A. I., & Balkrishanan, D. (2018). Mastication as a tool to prevent cognitive dysfunctions. Japanese Dental Science Review, 54(4), 169-173. https://doi.org/10.1016/j.jdsr.2018.06.001
- Tada, A. & Miura, H. (2017). Association between mastication and cognitive status: A systematic review. Archives of Gerontology and Geriatrics, 70, 44-53. https://doi.org/10.1016/j.archger.2016.12.006.
- Ono, Y., Yamamoto, T., Kubo, K. Y., & Onozuka, M. (2010). Occlusion and brain function: Mastication as a prevention of cognitive dysfunction. Journal of Oral Rehabilitation, 37(8), 624-640. https://doi.org/10.1111/j.1365-2842.2010.02079.x
- Mioche, L., Hiiemae, K. M., & Palmer, J. B. (2002). A postero-anterior videofluorographic study of the intra-oral management of food in man. Archives of Oral Biology, 47(4), 267-280. https://doi.org/10.1016/s0003-9969(02)00007-9
- Jia, L., Wang, Y., & Wang, M. (2016). Characteristics of opening movement in patients with unilateral mastication [Chinese]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 41(8), 826-831. https://doi.org/10.11817/j.issn.1672-7347.2016.08.009
- Farias Gomes, S. G., Custodio, W., Moura Jufer, J. S., Del Bel Cury, A. A., & Rodrigues Garcia, R. C. (2010). Correlation of mastication and masticatory movements and effect of chewing side preference. Brazilian dental journal, 21(4), 351-355. https://doi.org/10.1590/s0103-64402010000400011
- Lee, Y-J., Lee, S-B., Choi, G-W., & Yin, C. S. (2014). Intraoral appliances in the medical classics of 12th to 19th centuries [Korean]. Association of TMJ Balancing Medicine, 4(1), 1-4.
- Cho, S. Y., Shin, A. S., Na, B. J., Jahng, G. H., Park, S. U., Jung, W. S., et al. (2013). Brain activity associated with memory and cognitive function during jaw-tapping movement in healthy subjects using functional magnetic resonance imaging. Chinese Journal of Integrative Medicine, 19(6), 409-417. https://doi.org/10.1007/s11655-012-1187-7
- Tamura, T., Kanayama, T., Yoshida, S., & Kawasaki, T. (2003). Functional magnetic resonance imaging of human jaw movements. Journal of Oral Rehabilitation, 30(6), 614-622. https://doi.org/10.1046/j.1365-2842.2003.01054.x
- Tramonti Fantozzi, M. P., Diciotti, S., Tessa, C., Castagna, B., Chiesa, D., Barresi, M., et al. (2019). Unbalanced occlusion modifies the pattern of brain activity during execution of a finger to thumb motor task. Frontiers in Neuroscience, 13, 499. https://doi.org/10.3389/fnins.2019.00499
- Kubo, K. Y., Yamada, Y., Iinuma, M., Iwaku, F., Tamura, Y., Watanabe, K., et al. (2007). Occlusal disharmony induces spatial memory impairment and hippocampal neuron degeneration via stress in SAMP8 mice. Neuroscience Letters, 414(2), 188-191. https://doi.org/10.1016/j.neulet.2006.12.020
- Kim, M. J., Hong, J. Y., Lee, G., Yoon, T., Hwang, S. H., Kim, H. H., et al. (2020). Effects of chewing exercises on the occlusal force and masseter muscle thickness in community-dwelling Koreans aged 65 years and older: A randomised assessor-blind trial. Journal of Oral Rehabilitation, 47(9), 1103-1109. https://doi.org/10.1111/joor.13036
- Johnson, A. J., Muneem, M., & Miles, C. (2013). Chewing gum benefits sustained attention in the absence of task degradation. Nutritional Neuroscience, 16(4), 153-159. https://doi.org/10.1179/1476830512Y.0000000041
- Kim, H., Bae, J. H., & Chung, W. S. (2019). Effects of a chattering teeth training oral appliance for working memory improvement in healthy volunteers: a cross-over randomized trial. Integrative Medicine Research, 8(4), 247-251. https://doi.org/10.1016/j.imr.2019.09.001
- Jiang, H., Liu, H., Liu, G., Jin, Z., Wang, L., Ma, J., et al. (2015). Analysis of brain activity involved in chewing-side preference during chewing: an fMRI study. Journal of Oral Rehabilitation, 42(1), 27-33. https://doi.org/10.1111/joor.12224
- Julious, S. A. (2005). Sample size of 12 per group rule of thumb for a pilot study. Pharmaceutical Statistics, 4(4):287-291. https://doi.org/10.1002/pst.185
- Hirano, Y., Obata, T., Kashikura, K., Nonaka, H., Tachibana, A., Ikehira, H., et al. (2008). Effects of chewing in working memory processing. Neuroscience Letters, 436(2), 189-192. https://doi.org/10.1016/j.neulet.2008.03.033
- Hasegawa, Y., Ono, T., Hori, K., & Nokubi, T. (2007). Influence of human jaw movement on cerebral blood flow. Journal of Dental Research, 86(1), 64-68. https://doi.org/10.1177/154405910708600110
- Wilkinson, L., Scholey, A., & Wesnes, K. (2002). Chewing gum selectively improves aspects of memory in healthy volunteers. Appetite, 38(3), 235-236. https://doi.org/10.1006/appe.2002.0473
- Baker, J. R., Bezance, J. B., Zellaby, E., & Aggleton, J. P. (2004). Chewing gum can produce context-dependent effects upon memory. Appetite, 43(2), 207-210. https://doi.org/10.1016/j.appet.2004.06.004
- Prastowo, N. A., Kristanto, S., & Sasmita, P. K. (2015). Dark chocolate administration improves working memory in students. Universa Medicina, 34(3), 229-236. https://doi.org/10.18051/UnivMed.2015.v34.229-236
- Guo, X., Ohsawa, C., Suzuki, A., & Sekiyama, K. (2017). Improved digit Span in children after a 6-week intervention of playing a musical instrument: An exploratory randomized controlled trial. Frontiers in Psychology, 8, 2303. https://doi.org/10.3389/fpsyg.2017.02303
- Zimmermann, N., Cardoso, C. O., Trentini, C. M., Grassi-Oliveira, R., & Fonseca, R. P. (2015). Brazilian preliminary norms and investigation of age and education effects on the Modified Wisconsin Card Sorting Test, Stroop Color and Word test and Digit Span test in adults. Dementia & Neuropsychologia, 9(2), 120-127. https://doi.org/10.1590/1980-57642015DN92000006
- Patel, V., Walker, L., Feinstein, A (2017). Deconstructing the symbol digit modalities test in multiple sclerosis: The role of memory. Multiple Sclerosis and Related Disorders, 17, 184-189. https://doi.org/10.1016/j.msard.2017.08.006
- Onyper, S. V., Carr, T. L., Farrar, J. S., & Floyd, B. R. (2011). Cognitive advantages of chewing gum. Now you see them, now you don't. Appetite, 57(2), 321-328. https://doi.org/10.1016/j.appet.2011.05.313
- Khosravizadeh, P. & Gerami, S. (2010). Word list recall in youngsters and older adults. Brain (Bacau). 2(1), 5-10.
- Serel Arslan, S., Inal, O., Demir, N., Olmez, M. S., & Karaduman, A. A. (2017). Chewing side preference is associated with hemispheric laterality in healthy adults. Somatosensory and Motor Research, 34(2), 92-95. https://doi.org/10.1080/08990220.2017.1308923
- Yamasaki, Y., Kuwatsuru, R., Tsukiyama, Y., Matsumoto, H., Oki, K., & Koyano, K. (2015). Objective assessment of actual chewing side by measurement of bilateral masseter muscle electromyography. Archives of Oral Biology, 60(12), 1756-1762. https://doi.org/10.1016/j.archoralbio.2015.09.010
- Jiang, H., Li, C., Wang, Z., Cao, J., Shi, X., Ma, J., et al. (2015). Assessment of osseous morphology of temporomandibular joint in asymptomatic participants with chewing-side preference. Journal of Oral Rehabilitation, 42(2), 105-112. https://doi.org/10.1111/joor.12240
- Lee, S. M., Oh, S., Yu, S. J., Lee, K. M., Son, S. A., Kwon, Y. H., et al. (2017). Association between brain lateralization and mixing ability of chewing side. Journal of Dental Sciences, 12(2), 133-138. https://doi.org/10.1016/j.jds.2016.09.004
- Nishigawa, K., Suzuki, Y., Ishikawa, T., & Bando, E. (2012). Effect of occlusal contact stability on the jaw closing point during tapping movements. Journal of Prosthodontic Research, 56(2), 130-135. https://doi.org/10.1016/j.jpor.2011.04.005
- Watanabe, K., Ozono, S., Nishiyama, K., Saito, S., Tonosaki, K., Fujita, M., et al. (2002). The molarless condition in aged SAMP8 mice attenuates hippocampal Fos induction linked to water maze performance. Behavioural Brain Research, 128(1), 19-25. https://doi.org/10.1016/s0166-4328(01)00268-6
- Miyake, S., Wada-Takahashi, S., Honda, H., Takahashi, S. S., Sasaguri, K., Sato, S., et al. (2012). Stress and chewing affect blood flow and oxygen levels in the rat brain. Archives of Oral Biology, 57(11), 1491-1497. https://doi.org/10.1016/j.archoralbio.2012.06.008
- Shinagawa, H., Ono, T., Honda, E., Sasaki, T., Taira, M., Iriki, A., et al. (2004). Chewing-side preference is involved in differential cortical activation patterns during tongue movements after bilateral gum-chewing: A functional magnetic resonance imaging study. Journal of Dental Research, 83(10), 762-766. https://doi.org/10.1177/154405910408301005
- Liepert, J., Terborg, C., & Weiller, C. (1999). Motor plasticity induced by synchronized thumb and foot movements. Experimental Brain Research, 125(4), 435-439. https://doi.org/10.1007/s002210050700