DOI QR코드

DOI QR Code

Effects of Light Intensity, Light Quality and Photoperiod for Growth of Perilla in a Closed-type Plant Factory System

완전제어형 식물공장에서 광량과 광질, 광주기가 들깨의 생장에 미치는 영향

  • Sul, Seonggwan (Department of Horticulture, College of Applied Life Sciences, Jeju National University) ;
  • Baek, Youngtaek (Department of Horticulture, College of Applied Life Sciences, Jeju National University) ;
  • Cho, Young-Yeol (Major Horticultural Science, College of Applied Life Sciences, Jeju National University)
  • Received : 2022.06.07
  • Accepted : 2022.07.13
  • Published : 2022.07.31

Abstract

In order to select suitable light in a plant factory, electric energy use efficiency and light use efficiency should be considered simultaneously to consider operating costs as well as quantitative and functional aspects. The growth characteristics, electric energy use efficiency, light use efficiency by light intensity, LED ratio, and photoperiod conditions were compared together. Light intensity is 60, 130, 230, and 320 µmol·m-2·s-1 treatments, and light quality is the mixing ratio of red light and blue light 8:2, 6:4, 4:6, and 2:8 treatments. Photoperiod is 9, 12, 15, and 18 hours treatments based on the daytime. In the light intensity experiment, the growth rate increased as the light intensity increased, but there was no significant difference in the light use efficiency. When comparing the leaf fresh weight per power consumption, only the 320 µmol·m-2·s-1 treatment group showed significantly low efficiency, and there was no significant difference in the other treatments, so 230 µmol·m-2·s-1, which produced the most, was the most efficient. In the light quality experiment, the ratio of red light and blue light was measured to be high at the same time as the growth rate and light use efficiency in RB 8:2, and there was no significant difference in color difference and flavonoids content, so a Red:Blue ratio of 8:2 was the most suitable condition. In the photoperiod experiment, the longer the photoperiod, the higher the growth rate. However, there was no significant difference in the growth rate over 12 hours of daytime, so 12 hours considering the light consumption efficiency was a suitable condition. Based on the above results, LED light environmental conditions for perilla growth in plant factories were light intensity, light quality, and day length of 230 µmol·m-2·s-1 or more, 8:2, and 12 hours or more, respectively.

식물공장에서 적합한 광을 선정하기 위해서는 양적인 측면과 기능적 측면 뿐만 아니라 운영비를 고려하기 위하여 전기에너지이용효율과 광이용효율을 동시에 고려해야 하는데 본 연구에서는 들깨를 위한 LED광원의 광량, 적색광과 청색광의 혼합 비율과 광주기 조건별 생육 특성과 전기에너지이용효율과 광이용효율을 함께 비교하였다. 광량 처리구는 60, 130, 230, 320µmol·m-2·s-1 조건으로, 광질 처리구는 적색광과 청색광의 혼합 비율 8:2, 6:4, 4:6, 2:8 조건으로, 일장 처리구는 낮 기준 9, 12, 15, 18시간으로 처리하였다. 광량 실험에서는 광량이 높을수록 생육량이 늘어나는데 비해 소비전력당 건물중의 광이용효율은 유의차가 없었다. 소비전력당 엽생체중을 추가로 비교해보면 320µmol·m-2·s-1 처리구에서만 유의적으로 낮은 효율을 보였고 이외의 처리구에서는 유의차가 없었기 때문에 생산량이 가장 많은 230µmol·m-2·s-1가 가장 효율적이었다. 광질 실험에서는 적색광과 청색광의 혼합 비율은 RB 8:2에서 생육량과 광이용효율이 동시에 높게 측정되었고 색차와 flavonoids 함량에서는 유의차가 발생하지 않아 Red: Blue 비율 8:2가 가장 적합한 조건이었다. 광주기 실험에서는 광주기가 길어질수록 높은 생육량을 나타냈는데 일장 12시간이상에서는 생육량의 유의차가 없었으므로 광소비 효율을 고려한 12시간이 적합한 조건이었다. 이상의 결과를 바탕으로 식물공장에서 들깨 생육을 위한 LED 광 환경 조건으로는 광도, 광질과 일장은 각각 230µmol·m-2·s-1 이상, 8:2와 12시간 이상이었다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421033042HD050).

References

  1. Cha M.K., J.S. Kim, J.H. Shin, J.E. Son, and Y.Y. Cho 2014, Practical design of an artificial light-used plant factory for common ice plant (Mesembryanthemum crystallinum L.). Protected Hort Plant Fac 23:371-375. (in Korean) doi:10.12791/KSBEC.2014.23.4.371
  2. Choi J.H., E.S. Kang, J.S. Kim, and J.S. Eun 2015, Effect of LED lighting on growth and functional material contents in perilla (Perilla frutesens L.). J Agric Life Sci 46:9-15.
  3. Choi Y.W., C.K. Ahn, J.S. Kang, B.G. Son, I.S. Choi, Y.C. Kim, Y.G. Lee, K.K. Kim, Y.G. Kim, and K.W. Son 2003, Growth, photomorphogenesis, and photosynthesis of perilla grown under red, blue light emitting diodes and light intensities. Hortic Envion Biotechnol 44:281-286. (in Korean)
  4. Folta K.M., and K.S. Childers 2008, Light as a growth regulator: controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience 43:1957-1964. doi:10.21273/HORTSCI.43.7.1957
  5. Hoagland D.R., and D.I. Arnon 1950, The water-culture method for growing plants without soil. College of Agriculture, University of California, Berkeley, California, USA.
  6. Jeong S.I., H.S. Kim, I.H. Jeon, H.J. Kang, J.Y. Mok, C.J. Cheon, H.H. Yu, and S.I. Jang 2014, Antioxidant and anti-inflammatory effects of ethanol extracts from Perilla frutescens. Korean J Food Sci Technol 46:87-93. (in Korean) doi:10.9721/KJFST.2014.46.1.87
  7. Kim S., B. Song, and J. Ju 2015, Antioxidant activities of Perilla frutescens britton seed extract and its inhibitory effects against major characteristics of cancer cells. J Korean Soc Food Sci Nutr 44:208-215. (in Korean) doi:10.3746/jkfn.2015.44.2.208
  8. Kim S.J., G.J. Bok, and J.S. Park 2018, Analysis of antioxidant content and growth of Agastache rugosa as affected by LED light qualities. Protected Hort Plant Fac 27:260-268. (in Korean) doi:10.12791/KSBEC.2018.27.3.260
  9. Kozai T. 2013, Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory. Proc Jpn Acad Ser B Phys Biol Sci 89:447-461. doi:10.2183/pjab.89.447
  10. Krijn M.P.C.M., R.F.M. Van Elmpt, S.L. van de Voort, C.C.S. Nicole, G. van der Feltz, and T. van den Bergh 2017, Factors critical to plant factory performance. Acta Hortic 1227:615-622. doi:10.17660/ActaHortic.2018.1227.78
  11. Lee H.S., K.T. Kim, J.K. Sohn, and K.M. Kim 2006, Quality and sensory characteristics of transgenic perilla (Perilla frutescens) overexpressing rot 3 gene. J Plant Biotechnol 33:111-115. (in Korean) doi:10.5010/JPB.2006.33.2.111
  12. Lee J.G., S.S. Oh, S.H. Cha, Y.A. Jang, S.Y. Kim, Y.C. Um, and S.R. Cheong 2010, Effects of Red/Blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J Bio-Env Con 19:351-359. (in Korean)
  13. Lee M.H., G.W. Oh, B.K. Lee, and C.S. Jeong 2013, Perilla, a blessing for Korean. Rural Development Administration, 115.
  14. Li Q., and C. Kubota 2009, Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59-64. doi:10.1016/j.envexpbot.2009.06.011
  15. Lin K.H., M.Y. Huang, W.D. Huang, M.H. Hsu, Z.W. Yang, and C.M. Yang 2013, The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hortic 150:86-91. doi:10.1016/j.scienta.2012.10.002
  16. Nguyen T.K.L., and M.M. Oh 2021, Physiological and biochemical responses of green and red perilla to LED-based light. J Sci Food Agric 101:240-252. doi:10.1002/jsfa.10636
  17. Ouzounis T., F. Rosenqvist, and C.O. Ottosen 2015, Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience 50:1128-1135. doi:10.21273/HORTSCI.50.8.1128
  18. Saebo A., T. Krekling, and M. Appelgren 1995, Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tissue Organ Cult 41:177-185. doi:10.1007/BF00051588
  19. Seong E.S., E.W. Seo, I.M. Chung, M.J. Kim, H.Y. Kim, J.H. Yoo, J.H. Choi, N.J. Kim, and C.Y. Yu 2015, Growth characteristics and phenol compounds analysis of collected perilla frutescens resources from China and Japan. Korean J Med Crop Sci 23:132-137. (in Korean) doi:10.7783/KJMCS.2015.23.2.132
  20. Son K.H., M.J. Song, and M.M. Oh 2016, Comparison of combined light-emitting diodes and fluorescent lamps for growth and light use efficiency of red leaf lettuce. Protected Hort Plant Fac 25:139-145. (in Korean) doi:10.12791/KSBEC.2016.25.3.139
  21. Yoo J.H., J.H. Choi, B.J. Kang, M.R. Jeon, C.O. Lee, C.H. Kim, E.S. Seong, K. Heo, C.Y. Yu, and S.K. Choi 2017, Antioxidant and tyrosinase inhibition activity promoting effects of perilla by the light emitting plasma. Korean J Med Crop Sci 25:37-44. (in Korean) doi:10.7783/KJMCS.2017.25.1.37