DOI QR코드

DOI QR Code

Changes in Abscisic Acid, Carbohydrate, and Glucosinolate Metabolites in Kimchi Cabbage Treated with Glutamic Acid Foliar Application under Extremely Low Temperature Conditions

이상저온 시 글루탐산 엽면 처리에 의한 배추의 ABA, 탄수화물 및 Glucosinolate 대사체 변화

  • Sim, Ha Seon (Department of Horticultural Science, College of Agricultural and Science, Kyungpook National University) ;
  • Jo, Jung Su (Institute of Agricultural Science and Technology, Kyungpook National University) ;
  • Woo, Ui Jeong (Department of Horticultural Science, College of Agricultural and Science, Kyungpook National University) ;
  • Moon, Yu Hyun (Department of Horticultural Science, College of Agricultural and Science, Kyungpook National University) ;
  • Lee, Tae Yeon (Department of Horticultural Science, College of Agricultural and Science, Kyungpook National University) ;
  • Lee, Hee Ju (Vegetable Research Division, National Institute of Horticultural and Herbal Science) ;
  • Wi, Seung Hwan (Vegetable Research Division, National Institute of Horticultural and Herbal Science) ;
  • Kim, Sung Kyeom (Department of Horticultural Science, College of Agricultural and Science, Kyungpook National University)
  • 심하선 (경북대학교 대학원 원예과학과) ;
  • 조정수 (경북대학교 농업과학기술연구소) ;
  • 우의정 (경북대학교 대학원 원예과학과) ;
  • 문유현 (경북대학교 대학원 원예과학과) ;
  • 이태연 (경북대학교 대학원 원예과학과) ;
  • 이희주 (국립원예특작과학원 채소과) ;
  • 위승환 (국립원예특작과학원 채소과) ;
  • 김성겸 (경북대학교 원예과학과)
  • Received : 2022.06.17
  • Accepted : 2022.07.13
  • Published : 2022.07.31

Abstract

Glutamic acid is a precursor of essential amino acids that play an important role in plant growth and development. It is one of the biostimulants that reduce cold stress damage by stimulating biosynthetic pathways leading to cryoprotectants. This study evaluated the effects of glutamic acid foliar application on Kimchi cabbage under low-temperature stress. There were six treatments, combining three photo-/dark periods temperature levels (11/-1℃ extremely low, E; 16/4℃ moderately low, M; and 21/9℃ optimal, O) with and without glutamic acid foliar application (0 and 10 mg·L-1; Glu 0 and Glu 10). Glutamic acid foliar application was sprayed once 10 days after transplanting, and then temperature treatment immediately after glutamic acid foliar application was conducted for up to four days. After four days of treatment, abscisic acid (ABA), phaseic acid (PA), dihydrophaseic acid (DPA), and abscisic acid-glucose ester (ABA-GE) contents were higher with Glu 10 treatment than Glu 0 treatment in M treatment. Glucose content was highest in E with Glu 10 treatment (52.1 mg·100 g-1 dry weight), while fructose content was highest in O with Glu 0 treatment (134.6 mg·100 g-1 dry weight). The contents of glucolepiddin (GLP), glucobrassicin (GBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (GNBS), and gluconasturtiin (GNS) were highest among all treatments in E with Glu 10 treatments (0.72, 2.05, 1.67, 9.40 and 0.85 µmol·g-1 dry weight). After two days of treatment, rapid changes in PA and DPA contents of E with Glu 10 treatments were confirmed, and several individual glucosinolate contents (GLP, GBS, 4MGBS, GNBS, and GNS) were significantly different depending on low temperature and glutamic acid treatment. In addition, the content of fructose was significantly lower than that of O treatment in E and M treatments after four days of treatment. Therefore, although the changes in PA, DPA, glucose, fructose, and individual glucosinolates according to low temperature and glutamic acid foliar treatment were shown. A clear correlation between low temperature and glutamic acid effects could not be evaluated. Results indicated that Brassica crops are cryophilic vegetables, do not react sensitively to low temperatures, and mostly have cold resistance.

글루탐산은 식물의 생장과 발달에 중요한 역할을 하는 필수아미노산의 전구체이며, 저온 보호 물질로 이어지는 생합성 경로를 자극하여 저온 피해를 줄이는 생물자극제 중 하나이다. 본 연구에서는 저온 스트레스 조건에서 글루탐산 엽면 처리가 배추에 미치는 영향을 평가하였다. 글루탐산 2가지 엽면시비 농도(0 및 10mg·L-1)와 3가지 주/야간 온도 수준(11/-1℃ extremely low, E; 16/4℃ moderately low, M; 21/9℃ optimal, O)을 결합하여 6개의 처리가 수행되었다. 글루탐산의 엽면 처리는 정식 후 10일에 1회살포하고, 글루탐산 처리 직후 온도 처리는 최대 4일 동안 실시하였다. 처리 4일 후, ABA, PA, DPA 및 ABA-GE 함량은 M 처리에서 Glu 0 처리보다 Glu 10 처리에서 함량이 더 높았다. Glucose 함량은 E 및 Glu 10 처리에서 가장 높은 반면(52.1mg·100g-1 dry weight), fructose 함량은 O 및 Glu 0 처리에서 함량이 가장 높았다(134.6mg·100g-1 dry weight). GLP, GBS, 4MGBS, GNBS 및 GNS 함량은 E 및 Glu 10 처리에서 모든 처리 중 가장 높았다(0.72, 2.05, 1.67, 9.40 및 0.85µmol·g-1 dry weight). 처리 2일 후 E 및 Glu 10 처리의 PA와 DPA함량에서 급격한 변화를 확인하였고, 몇몇 개별 glucosinolate 함량(GLP, GBS, 4MGBS, GNBS 및 GNS)은 저온과 글루탐산 처리에 따라 유의적 차이를 확인할 수 있었다. 또한, fructose는 glucose 대신 fructan을 에너지원으로 사용하였기 때문에 처리 4일후 E와 M처리에서 O 처리에 비하여 유의적으로 낮은 함량을 보였다. 따라서, 저온과 글루탐산 엽면 처리에 따른 PA, DPA, glucose, fructose 및 개별glucosinolate 물질들의 변이를 확인하였지만, 저온과 글루탐산의 효과에 관한 명확한 상관관계를 평가할 수는 없었다. 배추과 작물은 호냉성 채소로서 저온에 민감하게 반응하지 않고, 대부분 내한성을 가지고 있기 때문으로 판단된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 "농업과학기술연구개발사업(과제번호: PJ01501901)"의 지원에 의해 이루어진 것임.

References

  1. Bhandari S.R., J.S. Jo, and J.G. Lee 2015, Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20:15827-15841. doi:10.3390/molecules200915827
  2. Bharath P., S. Gahir, and A.S. Raghavendra 2021, Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. Front Plant Sci 12:615114. doi:10.3389/fpls.2021.615114
  3. Bulgari R., G. Frazoni, and A. Ferrante 2019, Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306. doi:10.3390/agronomy9060306
  4. Del Carmen Martinez-Ballesta M., D.A. Moreno, and M. Carvajal 2013, The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14:11607-11625. doi:10.3390/ijms140611607
  5. Hong E., and G.H. Kim 2014, Variation of glucosinolate composition during seedling and growth stages of Brassica rapa L. ssp. pekinensis. Korean J Hortic Sci Technol 32:730-738. doi:10.7235/hort.2014.14041
  6. Ishida M., M. Hara, N. Fukino, T. Kakizaki, and Y. Morimitsu 2014, Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci 64:48-59. doi:/10.1270/jsbbs.64.48
  7. Islam M.R., B. Feng, T. Chen, L. Tao, and G. Fu 2018, Role of abscisic acid in thermal acclimation of plants. J Plant Biol 61:255-264. doi:10.1007/s12374-017-0429-9
  8. Jin X., R.S. Wang, M. Zhu, B.W. Jeon, R. Albert, S. Chen, and S.M. Assmann 2013, Abscisic acid-responsive guard cell metabolomes of Arabidopsis wild-type and gpa1 G-protein mutants. Plant Cell 25:4789-4811. doi:10.1105/tpc.113.119800
  9. Kan C.C., T.Y. Chung, H.Y. Wu, Y.A. Juo, and M.H. Hsieh 2017, Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. BMC Genomics 18:1-17. doi:10.1186/s12864-017-3588-7
  10. Kaplan F., and C.L. Guy 2004, β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135:1674-1684. doi:10.1104/pp.104.040808
  11. Korean Statistical Information Service (KOSIS) 2022, vegetable production (green vegetables) 1980~2021. (in Korean) Available via https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0028&vw_cd=MT_ZTITLE&list_id=K1_19&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&path=%252FstatisticsList%252FstatisticsListIndex.do
  12. Kushiro T., M. Okamoto, K. Nakabayashi, K. Yamagishi, S. Kitamura, T. Asami, N. Hirai, T. Koshiba, Y. Kamiya, and E. Nambara 2004, The arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647-1656. doi:10.1038/sj.emboj.7600121
  13. Lee H.J., J.S. Sim, S.G. Lee, S.K. Kim, B. Mun, and C.S. Choi 2017, Glutamic acid foliar application enhances antioxidant enzyme activities in Kimchi cabbages leaves treated with low air temperature. Korean J Hortic Sci Technol 35:700-706. doi:10.12972/kjhst.20170074
  14. Lee J.G., J. Lee, S. Park, Y.A. Jang, S.S. Oh, T.C. Seo, H.K. Yoon, and Y.C. Um 2011, Effect of low night-time temperature during seedling stageon growth of spring Chinese cabbage. J Bio-Env Con 20:326-332. (in Korean)
  15. Lee S.C., and S. Luan 2012, ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53-60. doi:10.1111/j.1365-3040.2011.02426.x
  16. Lei P., X. Pang, X. Feng, S. Li, B. Chi, R. Wang, Z. Xu, and H. Xu 2017, The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in Brassica napus L. seedlings by activating crosstalk between H2O2 and Ca2+. Sci Rep 7:1-15. doi:10.1038/srep41618
  17. Ljubej V., E. Karalija, B. Salopek-Sondi, and D. Samec 2021a, Effects of short-term exposure to low temperatures on proline, pigments, and phytochemicals level in kale (Brassica oleracea var. acephala). Horticulturae 7:341. doi:10.3390/horticulturae7100341
  18. Ljubej V., I. Radojcic Redovnikovic, B. Salopek-Sondi, A. Smolko, S. Roje, and D. Samec 2021b, Chilling and freezing temperature stress differently influence glucosinolates content in Brassica oleracea var. acephala. Plants 10:1305. doi:10.3390/plants10071305
  19. Maruyama K., M. Takeda, S. Kidokoro, K. Yamada, Y. Sakuma, K. Urano, M. Fujita, K. Yoshiwara, S. Matsukura, Y. Morishita, R. Sasaki, H. Suzuki, K. Saito, D. Shibata, K. Shinozaki, and K. Yamaguchi-Shinozaki 2009, Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972-1980. doi:10.1104/pp.109.135327
  20. Oliver S.N., E.S. Dennis, and R. Dolferus 2007, ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319-1330. doi:10.1093/pcp/pcm100
  21. Opena R.T., and S.H. Lo 1979, Genetics of heat tolerance in heading Chinese cabbage. HortScience 14:33-34. https://doi.org/10.21273/HORTSCI.14.1.33
  22. Ordaz-Ortiz J.J., S. Foukaraki, and L.A. Terry 2015, Assessing temporal flux of plant hormones in stored processing potatoes using high definition accurate mass spectrometry. Hortic Res 2:15002. doi:10.1038/hortres.2015.2
  23. Qiu X.M., Y.Y. Sun, X.Y. Ye, and Z.G. Li 2020, Signaling role of glutamate in plants. Front Plant Sci 10:1743. doi:10.3389/fpls.2019.01743
  24. Rezaul I.M., F. Baohua, C. Tingting, F. Weimeng, Z. Caixia, T. Longxing, and F. Guanfu 2019, Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets. Physiol Plant 165:644-663. doi:10.1111/ppl.12759
  25. Robertson A.J., M. Ishikawa, L.V. Gusta, and S. MacKenzie 1994, Abscisic acid-induced heat tolerance in Bromus Inermis Leyss cell-suspension cultures (heat-stable, abscisic acid-responsive polypeptides in combination with sucrose confer enhanced thermostability). Plant Physiol 105:181-190. doi:10.1104/pp.105.1.181
  26. Sadak M.S., and M.T. Abdelhamid 2015, Influence of amino acids mixture application on some biochemical aspects, antioxidant enzymes and endogenous polyamines of vicia faba plant grown under seawater salinity stress. Gesunde Pflanzen 67:119-129. doi:10.1007/s10343-015-0344-2
  27. Sarikamis G., and A. Cakir 2012, Influence of low temperature on aliphatic and indole glucosinolates in broccoli (Brassica oleracea var. italica L.). Acta Hortic 1145:79-84. doi:10.17660/ActaHortic.2016.1145.12
  28. Seiler C., V.T. Harshavardhan, K. Rajesh, P.S. Reddy, M. Strickert, H. Rolletschek, U. Scholz, U. Wobus, and N. Sreenivasulu 2011, ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615-2632. doi:10.1093/jxb/erq446
  29. Sharkey T.D., and K. Raschke 1980, Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus. Plant Physiol 65:291-297. doi:10.1104/pp.65.2.291
  30. Weiszmann J., L. Furtauer, W. Weckwerth, and T. Nagele 2018, Vacuolar sucrose cleavage prevents limitation of cytosolic carbohydrate metabolism and stabilizes photosynthesis under abiotic stress. FEBS J 285(21):4082-4098. doi:10.1111/febs.14656
  31. Wilkinson S., and W.J. Davies 2010, Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510-525. doi:10.1111/j.1365-3040.2009.02052.x
  32. Xu Z.J., M. Nakajima, Y. Suzuki, and I. Yamaguchi 2002, Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol 129:1285-1295. doi:10.1104/pp.001784
  33. Zandalinas S.I., D. Balfagon, V. Arbona, A. Gomez-Cadenas, M.A. Inupakutika, and R. Mittler 2016, ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot 67:5381-5390. doi:10.1093/jxb/erw299