DOI QR코드

DOI QR Code

Plant Regeneration via Adventitious Shoot Formation from Hypocotyl Explants of Groundcherry (Physalis angulata L.)

땅꽈리(Physalis angulata L.) 하배축 절편으로부터 신초 형성을 통한 식물체 재분화

  • Received : 2022.02.25
  • Accepted : 2022.04.08
  • Published : 2022.08.01

Abstract

In the present study, plant regeneration through adventitious shoot formation from hypocotyl segments of in vitro seedlings of groundcherry (Physalis angulata L.) was investigated to determine the optimum culture conditions for highly efficient regeneration of the species. Adventitious shoots in hypocotyl segments were efficiently induced on MS media with low concentrations of BAP, specifically, with 0.5-1.0 mg/L BAP singly or in combination with 0.1-0.5 mg/L NAA. The 1.0 mg/L BAP single treatment was most effective for forming multiple adventitious shoots. When the induced shoots were transferred to the root induction media, low concentrations of NAA, IBA, and IAA enhanced the development of adventitious roots from adventitious shoots, suggesting that low concentrations of auxins were optimal for producing regenerated plantlets. The number of roots per shoot was large (> 2.0), and the root length exceeded 8.0 cm. In particular, the development and the overall shape of the roots were ideal. Furthermore, the number and length of shoots exceeded 2 and 6.0 cm, respectively. When the regenerated plantlets were transferred to compost soil, the root and shoot systems had developed well to the point that all of the regenerated plantlets acclimated successfully, resulting in normal morphology and growth characteristics, similar to those of the mother plant. Therefore, plant regeneration via adventitious shoot formation is expected to be one of the main methods for producing groundcherry on a large scale for a stable supply of the raw materials.

본 연구는 약용식물자원인 땅꽈리 유식물의 하배축 절편으로부터 부정아 형성을 통한 재분화를 조사하여 효율적인 재분화 조건을 확립하고자 하였다. 신초는 저농도 BAP를 함유하는 MS 배지에서 효과적으로 유도되었다. 신초 유도는 BAP 0.5~1.0 mg/L를 단독으로 또는 NAA 0.1~0.5 mg/L와 함께 처리한 MS 배지에서 활발히 이루어졌으며, 특히 BAP 1.0 mg/L가 포함된 MS 배지가 가장 효과적이어서 다발성 신초가 왕성하게 형성되었다. 유도된 신초를 뿌리 유도 배지로 옮겼을 때, 저농도의 NAA, IBA, IAA에서 뿌리가 잘형성되어 재분화 식물체를 만들어 내기에 적절하였다. 발근 수와 뿌리의 길이는 각각평균 2.0개, 8.0 cm 이상으로 높게 나타났다. 특히, 0.03 mg/L의 NAA, IBA, IAA를 포함한 MS 배지에서 뿌리가 더잘 성장하고, 뿌리의 전체적인 형태도 양호하였다. 그리고, 저농도의 NAA, IBA, IAA를 함유하는 MS 배지에서 새로운 신초의 형성도 잘 이루어져서, 줄기의 수가 2개 이상으로 많이, 그리고 길이는 6.0 cm 이상으로 길게 신장하였다. 배양토에 이식한 재분화 식물체는 100%의 생존율을 보였으며, 모두 정상적인 성체로 생장하였다. 따라서 땅꽈리의 부정아 형성을 이용한 재분화 식물체의 생산은 개체들을 대량 증식할 수 있어 균질한 조원료를 안정적으로 공급하는데 주요 수단이 될 것으로 보인다.

Keywords

Acknowledgement

이 논문은 2022학년도 제주대학교 교원성과지원사업에 의하여 연구되었습니다.

References

  1. Apensa, V. and R. Mastuti. 2018. Effect of banana homogenate on shoot regeneration of Ciplukan (Physalis angulata L.). J. Exp. Life Sci. 8(1):53-60. https://doi.org/10.21776/ub.jels.2018.008.01.09
  2. Ayodhyareddy, P. and P. Rupa. 2016. Ethno medicinal, phyto chemical and therapeutic importance of Physalis angulata L.: review. Int. J. Sci. Res. 5:2122-2127.
  3. Figueiredo, M.C.C., A.R. Passos, F.M. Hughes, K.S.D. Santos, A.L.D. Silva and T.L. Soares. 2020. Reproductive biology of Physalis angulata L. (Solanaceae). Sci. Hortic. 267:109307. https://doi.org/10.1016/j.scienta.2020.109307
  4. Han, B.H., B.W. Yae, D.H. Goo and H.J. Yu. 2004. Micro-propagation of Philodendron wend-imbe through adventitious multi-bud cluster formation. J. Plant Biotechnol. 31(2):115-119 (in Korean). https://doi.org/10.5010/JPB.2004.31.2.115
  5. Hsieh, W.T., K.Y. Huang, H.Y. Lin and J.G. Chung. 2006. Physalis angulate induced G2/M phase arrest in human breast cancer cells. Food Chem. Toxicol. 44:974-983. https://doi.org/10.1016/j.fct.2005.11.013
  6. Juang, J.K., H.W. Huang, C.M. Chen and H.J. Liu. 1989. A new compound, with angulatin A, promotes type II DNA topoisomerase-mediated DNA damage. Biochem. Biophys. Research Commun. 159(3):1128-1134. https://doi.org/10.1016/0006-291X(89)92226-2
  7. Kang, I.J., Y.J. Lee and C.H. Bae. 2021. In vitro regeneration and genetic stability analysis of the regenerated green plants in Japanese blood grass (Imperata cylindrica 'Rubra'). Korean J. Plant Res. 34(2):156-165 (in Korean). https://doi.org/10.7732/KJPR.2021.34.2.156
  8. Kumar, O.A., S. Ramesh and S.S. Tata. 2016. In vitro micro-propagation of the medicinal plant Physalis angulata L. Not. Sci. Biol. 8(2):161-163. https://doi.org/10.15835/nsb829817
  9. Kusumaningtyas, R., N. Laily and P. Limandha. 2015. Potential of Ciplukan (Physalis angulata L.) as source of functional ingredient. Procedia Chem. 14:367-372. https://doi.org/10.1016/j.proche.2015.03.050
  10. Lee, S.E., J.R. Kim, H.J. Noh, G.S. Kim, J.H. Lee, J. Choi and S.Y. Kim. 2014. Screening of plants with inhibitory activity on cellular senescence. Korean J. Plant Res. 27(6):601-609. https://doi.org/10.7732/KJPR.2014.27.6.601
  11. Lee, T.B. 2006. Coloured Flora of Korea II. Hayngmunsa, Seoul, Korea. p. 152 (in Korean).
  12. Magalhaes, H.I.F., M.R. Torres, L.V. Costa-Lotufo, M.O. De Moraes, C. Pessoa, M.L. Veras and A.P.N.N. Alves. 2006. In -vitro and in-vivo antitumour activity of physalins B and D from Physalis angulata. J. Pharm. Pharmacol. 58(2):235-241. https://doi.org/10.1211/jpp.58.2.0011
  13. Mascarenhas, L.M.S., J.R.F.D. Santana and A.L. Brito. 2019. Micropropagation of Physalis peruviana L. Pesq. Agropec. Trop. Goiania, 49:e55603. https://doi.org/10.1590/1983-40632019v4955603
  14. Mastuti, R., A. Munawarti and E.R. Firdiana. 2017. The combination effect of auxin and cytokinin on in vitro callus formation of Physalis angulata L. - A medicinal plant. AIP Conf. Proc. 1908:040007.
  15. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Oh, S.J. and S.C. Koh. 2012. Adventitious shoot formation and plant regeneration from explants of Solanum nigrum L. Korean J. Plant Res. 25(2):277-284 (in Korean). https://doi.org/10.7732/KJPR.2012.25.2.277
  17. Pennazio, S. 1975. Effect of adenine and kinetin on development of carnation tips cultured in vitro. J. Hort. Sci. 50:161-164. https://doi.org/10.1080/00221589.1975.11514617
  18. Pham, L.H., M. Bohme and I. Pinker. 2016. Solanaceae diversity in Vietnam: a preliminary taxonomic inventory for conservation and utilization. Agric. For. 62(4):45-55.
  19. Saito, A. and Y. Ide. 1985. In vitro plantlet regeneration from adventitious buds on induced cuttings of peeled twigs of Japanese white birch. J. Jpn. For. Soc. 67:282-284.
  20. Samuels, J. 2015. Biodiversity of food species of the Solanaceae family: a preliminary taxonomic inventory of subfamily Solanoideae. Resources 4(2):277-322. https://doi.org/10.3390/resources4020277
  21. Shim, K.K. and Y.M. Ha. 1997. Mass propagation of Korean native Styrax japonicus through axillary bud culture. J. Korean Soc. Hort. Sci. 38(5):575-580 (in Korean).