DOI QR코드

DOI QR Code

Composition, Ecology and Conservation of the Andong Serpentine Flora, South Korea

안동 사문암 지역의 식물상과 생태와 보전

  • Park, Jeong Seok (Department of Biology, Keimyung University) ;
  • Kim, Yun Ha (Department of Biology, Keimyung University) ;
  • Nam, Hee Jung (Research Center for Endangered Species, National Institute of Ecology) ;
  • Eom, Byeongcheol (Institute of Habitat Ecology and Phytosociology) ;
  • Lee, Gyeong-Yeon (Research Center for Endangered Species, National Institute of Ecology) ;
  • Kim, Jong Won (Institute of Habitat Ecology and Phytosociology)
  • 박정석 (계명대학교 생물학과) ;
  • 김윤하 (계명대학교 생물학과) ;
  • 남희정 (국립생태원 멸종위기종복원센터) ;
  • 엄병철 (서식처생태학과식물사회학연구소) ;
  • 이경연 (국립생태원 멸종위기종복원센터) ;
  • 김종원 (서식처생태학과식물사회학연구소)
  • Received : 2022.02.18
  • Accepted : 2022.04.01
  • Published : 2022.08.01

Abstract

The ultramafic serpentine area, the small size of 3 km2, remains in Andong, South Korea. We researched the ecological flora and its structure through the 12 times field investigations from 2013 till 2018. A total of 527 taxa including the previously recorded species-list was analyzed. Among them, 331 taxa were filed up as a real flora of the serpentine area. On the vegetation land-cover map describing a characteristic aspect of species distribution, a matrix of the sparse forest by Pinus densiflora and the grassland patches were the main landscape. The study area was acknowledged as a home for the ethnobotanical species and grassland components, and clearly distinctive from the non-serpentine area. The original habitat was too deteriorated by introducing the non-site soils and exotic plants. Conclusionally a designation of a protected area and the long-term ecological monitoring were requested.

경북 안동에는 초염기성 사문암 지역 약 3 km2가 잔존한다. 2013년부터 2018년까지 총12차례의 현장 조사를 통해 지역 식물상과 그 구조에 대한 생태학적 연구가 이루어졌다. 선행 연구의 식물상 목록을 포함하여 총527분류군의 예비적 식물상을 기록하였고, 이로부터 사문암 입지에 대응하는 현존식물상(real flora)으로서 총 331분류군을 규명하였다. 식생피복도 분석으로부터 소나무 듬성숲(sparse forest)과 초원식생의 모자이크 상관이 본 연구 지역의 특징적 경관이었다. 연구 대상의 사문암 지역은 민족식물학적 식물종 및 초원식생 분자의 주요 거처로서 비사문암지역과의 분명한 차별성이 인정되었다. 서식처의 원형은 외지(non-site) 토양의 유입과 이질적인(exotic) 식물종의 도입으로 인하여 심한 질적 쇠퇴가 진행되고 있었다. 결론적으로 국가 차원의 보호지역 지정과 생태학적 장기추적연구의 필요성이 대두되었다.

Keywords

References

  1. Alexander, E.B., R.G. Coleman, T. Keeler-Wolfe and S.P. Harrison. 2007. Serpentine Geoecology of Western North America: Geology, Soils, and Vegetation. Oxford University Press New York, NY (USA). pp. 1-512.
  2. Bae, S.T. 2016. Study on the forest vegetation of serpentine area in Gongju, Chungchongnam-do, Korea. Department of Ecology Landscape Architecture-Design, MS Thesis, Jeonbuk National Univ., Korea. pp. 1-55 (in Korean).
  3. Bilz, M., S.P. Kell, N. Maxted and R.V. Lansdown. 2011. European Red List of Vascular Plants. Publications Office of the European Union, EU. pp. 1-130.
  4. Bradley, R., A.J. Burt and D.J. Read. 1982. The biology of mycorrhiza in the Ericaceae: VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol. 91(2):197-209. https://doi.org/10.1111/j.1469-8137.1982.tb03306.x
  5. Brady, K.U., A.R. Kruckeberg and H.D. Bradshaw Jr. 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. S. 36:243-266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730
  6. Brooks, R.R. 1987. Serpentine and Its Vegetation: A Multidisciplinary Approach. Dioscorides Press, Portland, OR (USA). pp. 1-454.
  7. Chung, G.Y., M.S. Park, B.M. Nam, K.N. Hong, J. Jang, H.J. Jeong and K.O. Yoo. 2010. Distribution of vascular plants in Gallasan (Andong-si.Uiseong-gun, Gyeongbuk). Korean J. Plant Res. 23(1):99-114 (in Korean).
  8. Diaz, S., M. Cabido and F. Casanoves. 1998. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9(1):113-122. https://doi.org/10.2307/3237229
  9. Doust, L.L. 1981. Population dynamics and local specialization in a clonal perennial (Ranunculus repens): I. The dynamics of ramets in contrasting habitats. J. Ecol. 69(3):743-755. https://doi.org/10.2307/2259633
  10. Environmental Systems Research Institute (ESRI). 2005. ArcGIS Software. Version 9.1. ESRI, Redlands, CA (USA).
  11. Eom, B.C. 2019. Climatically potential natural vegetation and phytoclimatic map of Korea. Department of Biology, Ph.D. Thesis, Keimyung Univ., Korea. pp. 1-132 (in Korean).
  12. Fernandez, S., S. Seoane and A. Merino. 1999. Plant heavy metal concentrations and soil biological properties in agricultural serpentine soils. Commun. Soil Sci. Plan. 30(13-14):1867-1884. https://doi.org/10.1080/00103629909370338
  13. Google Maps. 2017. "Gisan-ri, Pungcheon-myeon, Andong, Korea." Google. Accessed June 5, 2017. https://goo.gl/maps/RXLgWEZyAtAagb4K8.
  14. Grime, J.P. and S. Pierce. 2012. The Evolutionary Strategies that Shape Ecosystems. John Wiley & Sons, Chichester, UK. pp. 1-240.
  15. Harrison, S. 1999. Local and regional diversity in a patchy landscape: Native, alien, and endemic herbs on serpentine. Ecology 80(1):70-80. https://doi.org/10.1890/0012-9658(1999)080[0070:LARDIA]2.0.CO;2
  16. Hidalgo-Triana, N., A.V. Perez Latorre and J.H. Thorne. 2018. Plant functional traits and groups in a Californian serpentine chaparral. Ecol. Res. 33(3):525-535. https://doi.org/10.1007/s11284-017-1532-6
  17. Honnay, O. and B. Bossuyt. 2005. Prolonged clonal growth: Escape route or route to extinction? Oikos 108(2):427-432. https://doi.org/10.1111/j.0030-1299.2005.13569.x
  18. Hwang, J.Y. 2002. Character and application of serpentine. J. Miner. Soc. Korea (Mineral & Industry) 15(2):48-54 (in Korean).
  19. Hwang, J.Y., J.J. Kim and S.S. Ock. 1993. Genesis and mineralogy of the serpentinite deposits in the Andong area, Korea. J. Korean Inst. Mining Geol. 26(1):1-10 (in Korean).
  20. Hwang, S.Y., J.W. Lee, E.H. La and J.K. Anh. 2020. Flora of the vascular plants of the Baekdudaegan conservation area: Deok-chi to Yuk-sim-nyeong. Korean J. Pl. Taxon. 50(1):56-79 (in Korean). https://doi.org/10.11110/kjpt.2020.50.1.56
  21. Jeong, J.H., C.S. Kim, C.S. Goo, C.H. Lee, H.G. Won and J.G. Byun. 2003. Physio-chemical properties of Korean forest soils by parent rocks. J. Korean For. Soc. 92(3):254-262 (in Korean).
  22. Kim, C.H. 2000. Assessment of natural environment: 1. Selection of plant taxa. Korean J. Environ. Biol. 18(1):163-198 (in Korean).
  23. Kim, J.H., S.Y. Kim, E.H. Jung, J.S. Kim, T.K. Noh, H.M. Bae, C.H. Nam and B.Y. Lee. 2016. Floristic diversity of serpentine area in Andong, Korea. Korean J. Environ. Ecol. 30(1):19-38 (in Korean). https://doi.org/10.13047/KJEE.2016.30.1.019
  24. Kim, J.H., Y.S. Kwak and H.T. Mun. 1992. Classification of calcicoles and calcifuges on the basis of the ratio of soluble to insoluble Ca2+ and Mg2+ in the leaves. Korean J. Ecol. 15(3):311-328 (in Korean).
  25. Kim, J.S., B.C. Lee, J.M. Chung and J.H. Pak. 2005. Flora and phytogeography on Mt. Deokhang (Gangwon-do), limestone area in Korea. Korean J. Pl. Taxon. 35(4):337-364 (in Korean). https://doi.org/10.11110/kjpt.2005.35.4.337
  26. Kim, J.W. 2004. Vegetation Ecology. World Science Publisher, Seoul, Korea. pp. 1-340 (in Korean).
  27. Kim, J.W. 2013. The Ecological Flora of Korea. Vol. 1. Synanthrophic Plants. Nature & Ecology, Seoul, Korea. pp. 1-1199 (in Korean).
  28. Kim, J.W. 2016. The Ecological Flora of Korea. Vol. 2. Grassland Plants. Nature & Ecology, Seoul, Korea. pp. 1-816 (in Korean).
  29. Kim, J.W. and Y.K. Lee. 2006. Classification and Assessment of Plant Communities. World Science Publisher, Seoul, Korea. pp. 1-240 (in Korean).
  30. Kim, J.W, B.C. Eom, J.A. Lee, J.S. Park, Y.H. Kim and G.Y. Lee. 2019. The floristic regional indicator plants: Ecological paradox of conservation measure for plant species. The 74th Annual Meeting of the Korean Association of Biological Science. Jeju, Korea. p. 66 (in Korean).
  31. Kim, J.W, B.K. Choi, T.B. Ryu and Lee, G.Y. 2012. Application and assessment of National Vegetation Naturalness: In National Institute of Environmental Research (ed.), Guideline for the 4th National Survey for Natural Environment. National Institute of Environmental Research, Inchon, Korea. pp. 81-172 (in Korean).
  32. Kim, J.W, S.E. Lee and J.A. Lee. 2017. Hwasan wetland vegetation in Gunwi, South Korea: With a phytosociological focus on alder (Alnus japonica (Thunb.) Steud.) forests. Korean J. Ecol. and Environ. 50(1):70-78 (in Korean). https://doi.org/10.11614/KSL.2017.50.1.070
  33. Kim, M.H., M.S. Han, K.K. Kang, Y.E. Na and H.S. Bang. 2011. Effects of climate change on C4 plant list and distribution in South Korea: a review. Korean J. Agric. For. Meteor. 13(3):123-139 (in Korean). https://doi.org/10.5532/KJAFM.2011.13.3.123
  34. Kim, S.Y. 2012. Syntaxonomy of subalpine vegetation in Korea. Ph.D. Thesis, Keimyung Univ., Korea. pp. 51-57 (in Korean).
  35. Kim, T.J. 1996. The vegetation of Andong serpentine area. Department of Biology, MS Thesis, Chung-Ang Univ., Korea. pp. 1-34 (in Korean).
  36. Kim, W.B. 1999. A study on the flora of serpentine area in Andong. J. Korean Biota. 4:175-188 (in Korean).
  37. Korea Institute of Geoscience and Mineral Resources (KIGAM). 2019. Geological Map. Accessed August 1, 2019. https://mgeo.kigam.re.kr/.
  38. Korea Meteorological Administration (KMA). 2021. Automatic Weather Station. Accessed December 3, 2021. https://data.kma.go.kr/cmmn/main.do.
  39. Korea National Arboretum (KNA). 2008. Illustrated Pteridophyta of Korea. KNA, Pocheon, Korea. pp. 1-547 (in Korean)
  40. Korea National Arboretum (KNA). 2011. Illustrated Grasses of Korea. KNA, Pocheon, Korea. pp. 1-600 (in Korean)
  41. Korea National Arboretum (KNA). 2016a. Illustrated Cyperaceae of Korea. KNA, Pocheon, Korea. pp. 1-609 (in Korean)
  42. Korea National Arboretum (KNA). 2016b. Standard Checklist of Cultivated Plants in Korea. KNA, Yangpoung, Korea. pp. 1-510 (in Korean).
  43. Korea National Arboretum (KNA). Korean Plant Names Index. (accessed on 5 June 2021). http://www.nature.go.kr/.
  44. Kruckeberg, A.R. 1951. Intraspecific variability in the response of certain native plant species to serpentine soil. Am. J. Bot. 38(6):408-419. https://doi.org/10.2307/2438248
  45. Kruckeberg, A.R. 1967. Ecotypic response to ultramafic soils by some plant species of northwestern United States. Brittonia 19(2):133-151. https://doi.org/10.2307/2805271
  46. Lee, H.S. 1991. Studies on the characters of soil and flora on limestone area, Danyang. The Bulletin of Institute of Basic Science 5:67-80. Seowon Univ., Cheongju, Korea (in Korean).
  47. Lee, H.S. and Y.H. You. 2002. Studies on the flora of the vascular plants on Mt. Manroesan and its surrounding regions. The Bulletin of Institute of Basic Science 16:55-89. Seowon Univ., Cheongju, Korea (in Korean).
  48. Lee, J.A. and J.W. Kim. 2017. A new association of Gueldenstaedtio-Zoysietum japonicae: a syntaxonomical and syngeographical description of the southernmost population of Gueldenstaedtia verna in South Korea. Weed Turf. Sci. 6(1):40-54 (in Korean). https://doi.org/10.5660/WTS.2017.6.1.40
  49. Lee, J.S. and A.N. Lim. 1998. Soil chemical properties of natural Rhododendron habitats and content of foliar inorganic nutrient of Rhododendrons growing in the natural habitats. Research Bulletin 57(2):141-149. Daegu Catholic Univ., Gyeongsan, Korea (in Korean).
  50. Lee, T.B. 2003a. Coloured Flora of Korea. Vol. I. Hyangmounsa, Seoul, Korea. pp. 1-901 (in Korean).
  51. Lee, T.B. 2003b. Coloured Flora of Korea. Vol. II. Hyangmounsa, Seoul, Korea. pp. 1-914 (in Korean).
  52. Lee, W.T. 1996. Lineamenta Florae Koreae I. Academy Book, Seoul, Korea. pp. 1-624 (in Korean).
  53. Main, J.L. 1981. Magnesium and calcium nutrition of a serpentine endemic grass. Am. Midl. Nat. 105(1):196-199. https://doi.org/10.2307/2425026
  54. McGill, B.J., B.J. Enquist, E. Weiher and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21(4):178-185. https://doi.org/10.1016/j.tree.2006.02.002
  55. McNeely, J.A., H.A. Mooney, L.E. Neville, P.J. Schei and J.K. Waage. 2001. A Global Strategy on Invasive Alien Species. IUCN Gland, Switzerland, and Cambridge, UK. pp. 1-50.
  56. Mucina, L., M.C. Rutherford and L.W. Powrie. 2006. The logic of the map: approaches and procedures: In Mucina, L. and M.C. Rutherford (eds.), The Vegetation of South Africa, Lesotho and Swaziland, Strelitzia 19, South African National Biodiversity Institute, Pretoria, South Africa. pp. 12-29.
  57. Nakai, T. 1919. Report on the Vegetation of the Island Ooryongto or Dagelet Island, Corea. The Government of Chosen, Seoul, Korea. pp. 1-87 (in Japanese).
  58. Nam, G.H., J.H. Kim, Y.C. Kim, J.S. Kim and B.Y. Lee. 2012. Floristic study of county Pyeong-chang and Yeong-wol including limestone regions (Prov. Gangwon-do) from Korea. Korean J. Environ. Ecol. 26(1):11-38 (in Korean).
  59. National Geographic Information Institute (NGII). 2020. Aerial Photograph. Accessed December 11, 2020. http://map.ngii.go.kr/ms/map/NlipMap.do.
  60. National Institute of Biological Resources (NIBR). 2015. Flora of Biodiversity Hot-spot in Korea (IV). NIBR, Inchon, Korea. pp. 59-106 (in Korean).
  61. Park, S.H. 2009. New Illustrations and Photographs of Naturalized Plants of Korea. Ilchokak, Seoul, Korea. pp. 1-575 (in Korean).
  62. Proctor, J. 1971. The plant ecology of serpentine: III. The influence of a high magnesium/calcium ratio and high nickel and chromium levels in some British and Swedish serpentine soils. J. Ecol. 59(3):827-842. https://doi.org/10.2307/2258143
  63. Ryou, S.H., J.M. Kim, S.S. Cha and J.K. Shim. 2010. Decomposition of leaf litter containing heavy metals in the Andong serpentine area, Korea. Korean J. Environ. Ecol. 24(4):426-435 (in Korean).
  64. Ryu, T.B. 2012. Ecological classification of naturalized plant species in South Korea. Department of Biology, MS Thesis, Keimyung Univ., Korea. pp. 1-121 (in Korean).
  65. Song, J.M., H.J. Son, Y.S. Kim, S.C. Kim, D.H. Lee, W.G. Park and S.J. Kwon. 2016. The flora of limestone area, Mt. Seokbyeong. Korean J. Plant Res. 29(2):241-263 (in Korean). https://doi.org/10.7732/KJPR.2016.29.2.241
  66. Stevanovic, V., K. Tan and G. Iatrou. 2003. Distribution of the endemic Balkan flora on serpentine I: obligate serpentine endemics. Plant Syst. Evol. 242:149-170. https://doi.org/10.1007/s00606-003-0044-8
  67. Stoughton, J.A. and W.A. Marcus. 2000. Persistent impacts of trace metals from mining on floodplain grass communities along Soda Butte Creek, Yellowstone National Park. Environ. Manage. 25(3):305-320. https://doi.org/10.1007/s002679910024
  68. Sung, J.W. and S.G. Kang. 2020. Vascular Plant Species in the Southern Sejong. Korean J. Plant Res. 33(4):311-336 (in Korean). https://doi.org/10.7732/KJPR.2020.33.4.311
  69. Tilman, D. and H. Olff. 1991. An experimental study of the effects of pH and nitrogen on grassland vegetation. Acta Oecol. 12(3):427-441.
  70. Violle, C., M.L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116(5):882-892. https://doi.org/10.1111/j.2007.0030-1299.15559.x
  71. Whittaker, R.H. 1954. The ecology of serpentine soils. Ecology 35(2):258-288. https://doi.org/10.2307/1931126
  72. Wilson, J. and G. Lee. 1989. Infiltration invasion. Funct. Ecol. 3:379-382.
  73. World Flora Online (WFO). 2021. An Online Flora of All Known Plants. (accessed on 5 June 2021). http://www.worldfloraonline.org/.
  74. Wright, J.W., M.L. Stanton and R. Scherson. 2006. Local adaptations to serpentine and non-serpentine soils in Collinsia sparsiflora. Evol. Ecol. Res. 8:1-21.