DOI QR코드

DOI QR Code

Controlling of ring based structure of rotating FG shell: Frequency distribution

  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
  • Received : 2021.11.15
  • Accepted : 2022.06.11
  • Published : 2022.07.25

Abstract

Based on novel Galerkin's technique, the theoretical study gives a prediction to estimate the vibrations of FG rotating cylindrical shell. Terms of ring supports have been introduced by a polynomial function. Three different laws of volume fraction are utilized for the vibration of cylindrical shells. Variation frequencies with the locations of ring supports have been analyzed and these ring supports are placed round the circumferential direction. The base of this approach is an approximate estimation of eigenvalues of proper functions which are the results of solutions of vibrating equation. Each longitudinal wave number corresponds to a particular boundary condition. The results are given in tabular and graphical forms. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing length-to-radius ratio. There is a new form of frequencies is obtained for different positions of ring supports, which is bell shaped. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases.

Keywords

Acknowledgement

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

  1. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., Int. J., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
  2. Ahmed, R.A., Mustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., Int. J., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413
  3. Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021a), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., Int. J., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243
  4. Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021b), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., Int. J., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243
  5. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  6. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  7. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X
  8. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(07), 1750100. https://doi.org/10.1142/S1758825117501009
  9. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
  10. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., Int. J., 6(3), 219-243. https://doi.org/10.12989/anr.2018.6.3.219
  11. Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1
  12. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Computat. Appl. Mech., 50(1), 63-68. http://doi.org/10.22059/jcamech.2019.281285.392
  13. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., Int. J., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.2.277
  14. Amabili, M. (1999), "Vibration of circular tubes and shells filled and partially immersed in dense fluids", J. Sound Vib., 221(4), 567-585. https://doi.org/10.1006/jsvi.1998.2050
  15. Amabili, M., Pellicano, F. and Paidoussis, M.P. (1998), "Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid", J. Fluids Struct., 12(7), 883-918. https://doi.org/10.1006/jfls.1998.0173
  16. Ansari, R. and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach", Int. J. Nano Dimens., 6(5), 453-462. https://doi.org/10.7508/IJND.2015.05.002
  17. Arnold, R.N. and Warburton, G.B. (1953), "The flexural vibrations of thin cylinders", Proceedings of the Institution of Mechanical Engineers, 167(1), 62-80. https://doi.org/10.1243/PIMEPROC195316701402
  18. Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proceedings of the Cambridge Philosophical Society, 7, 101-111.
  19. Chami, K., Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., Int. J., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091
  20. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010
  21. Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Methods Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254
  22. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3
  23. Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", Trans. ASME, J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733
  24. Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139
  25. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018a), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007
  26. Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2018b), "Dynamic analysis of graded small-scale shells with porosity distributions under transverse dynamic loads", Eur. Phys. J. Plus, 133(9), 1-11. https://doi.org/10.1140/epjp/i2018-12152-5
  27. Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2020), "Forced vibrations of multi-phase crystalline porous shells based on strain gradient elasticity and pulse load effects", J. Vib. Eng. Technol., 8(6), 925-933. https://doi.org/10.1007/s42417-020-00203-8
  28. Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., Int. J., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631
  29. Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495. https://doi.org/10.1016/S0022-460X(85)80067-5
  30. Ghaemian, S., Muderrisoglu, Z. and Yazgan, U. (2020), "The effect of finite element modeling assumptions on collapse capacity of an RC frame building", Earthq. Struct., Int. J., 18(5), 555-565. https://doi.org/10.12989/eas.2020.18.5.555
  31. Goncalves, P.B. and Batista, R.C. (1987), "Frequency response of cylindrical shells partially submerged or filled with liquid", J. Sound Vib., 113(1), 59-70. https://doi.org/10.1016/S0022-460X(87)81340-8
  32. Goncalves, P.B. and Batista, R.C. (1988), "Non-linear vibration analysis of fluid-filled cylindrical shells", J. Sound Vib., 127(1), 133-143. https://doi.org/10.1006/jsvi.2001.4139
  33. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  34. Lam, K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S
  35. Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X
  36. Love, A.E.H. (1888), "On the small free vibrations and deformation of thin elastic shell", Phil. Trans. R. Soc. London, A179, 491-549. https://doi.org/10.1098/rsta.1888.0016
  37. Naeem, M.N., Ghamkhar, M., Arshad, S.H. and Shah, A.G. (2013), "Vibration analysis of submerged thin FGM cylindrical shells", J. Mech. Sci. Technol., 27(3), 649-656. https://doi.org/10.1007/s12206-013-0119-6
  38. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. http/10.1007/s00707-006-0438-0
  39. Nebab, M., Atmane, H.A., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., Int. J., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447
  40. Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5
  41. Penzes, L.E. and Kraus, H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA Journal, 10, 1309. https://doi.org/10.2514/3.6605
  42. Reisi, A., Mirdamadi, H.R. and Rahgozar, M.A. (2020), "Numerical and experimental study of the nested-eccentric-cylindrical shells damper", Earthq. Struct., Int. J., 18(5), 637- 648. https://doi.org/10.12989/eas.2020.18.5.637
  43. Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8
  44. Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", In: National Aeronautic and Space Administration; for sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, VA, USA. https://ntrs.nasa.gov/search.jsp?R=19680024266%202020-06-07T18:48:40+00:00Z
  45. Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Mathe. Mech., 30(5), 607-615. https://doi.org/10.1007/s10483-009-0507-x
  46. Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412
  47. Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Engineering, 2, 228-236. https://doi.org/10.4236/eng.2010.24033
  48. Srinivasan, A.V. and Lauterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Trans. ASME, J. Eng. Industry, 93, 1229-1232. https://doi.org/10.1115/1.3428067
  49. Tu, Y.H., Lo, T.Y. and Chuang, T.H. (2020), "Lateral loading test for partially confined and unconfined masonry panels", Earthq. Struct., Int. J., 18(3), 379-390. https://doi.org/10.12989/eas.2020.18.3.379
  50. Wang, S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55, 1340-1342. https://doi.org/10.1121/1.1914708
  51. Wang, C. and Lai, J.C.S. (2000), "Prediction of natural frequencies of finite length circular cylindrical shells", Appl. Acoust., 59(4), 385-400. https://doi.org/10.1016/S0003-682X(99)00039-0
  52. Zhang, X.M. (2002), "Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach", Comput. Methods Appl. Mech. Eng., 191, 2057-2071. https://doi.org/10.1016/S0045-7825(01)00368-1
  53. Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X