Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education to S.W.C. (NRF-2014R1A6A1030318 and NRF-2021R1A2C1094382) and the KRIBB and KIST institutional Program to S.J.L. (KGM5322214 and 2E31700-22-P005).
References
- Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20, 31-42 https://doi.org/10.1038/cdd.2012.81
- Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62, 341-360 https://doi.org/10.1042/EBC20170104
- Um JH, Yun J (2017) Emerging role of mitophagy in human diseases and physiology. BMB Rep 50, 299-307 https://doi.org/10.5483/BMBRep.2017.50.6.056
- Doblado L, Lueck C, Rey C et al (2021) Mitophagy in human diseases. Int J Mol Sci 22, 3903 https://doi.org/10.3390/ijms22083903
- Lou G, Palikaras K, Lautrup S, Scheibye-Knudsen M, Tavernarakis N, Fang EF (2020) Mitophagy and neuroprotection. Trends Mol Med 26, 8-20 https://doi.org/10.1016/j.molmed.2019.07.002
- Gkikas I, Palikaras K, Tavernarakis N (2018) The role of mitophagy in innate immunity. Front Immunol 9, 1283 https://doi.org/10.3389/fimmu.2018.01283
- Hung CM, Lombardo PS, Malik N et al (2021) AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy. Sci Adv 7, eabg4544 https://doi.org/10.1126/sciadv.abg4544
- Park GH, Park JH, Chung KC (2021) Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 54, 592-600 https://doi.org/10.5483/BMBRep.2021.54.12.107
- Shin WH, Park JH, Chung KC (2020) The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease. BMB Rep 53, 56-63 https://doi.org/10.5483/BMBRep.2020.53.1.283
- Vernay A, Marchetti A, Sabra A et al (2017) MitoNEET-dependent formation of intermitochondrial junctions. Proc Natl Acad Sci U S A 114, 8277-8282 https://doi.org/10.1073/pnas.1706643114
- Molino D, Pila-Castellanos I, Marjault HB et al (2020) Chemical targeting of NEET proteins reveals their function in mitochondrial morphodynamics. EMBO Rep 21, e49019 https://doi.org/10.15252/embr.201949019
- Sohn YS, Tamir S, Song L et al (2013) NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proc Natl Acad Sci U S A 110, 14676-14681 https://doi.org/10.1073/pnas.1313198110
- Salem AF, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP (2012) Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance. Cell Cycle 11, 4174-4180 https://doi.org/10.4161/cc.22376
- Tamir S, Paddock ML, Darash-Yahana-Baram M et al (2015) Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease. Biochim Biophys Acta 1853, 1294-1315 https://doi.org/10.1016/j.bbamcr.2014.10.014
- Yamano K, Matsuda N, Tanaka K (2016) The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 17, 300-316 https://doi.org/10.15252/embr.201541486
- Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ (2013) PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol 200, 163-172 https://doi.org/10.1083/jcb.201210111
- Seabright AP, Fine NHF, Barlow JP et al (2020) AMPK activation induces mitophagy and promotes mitochondrial fission while activating TBK1 in a PINK1-Parkin independent manner. FASEB J 34, 6284-6301 https://doi.org/10.1096/fj.201903051R
- Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19, 121-135 https://doi.org/10.1038/nrm.2017.95
- Colca JR, McDonald WG, Waldon DJ et al (2004) Identification of a novel mitochondrial protein ("mitoNEET") cross-linked specifically by a thiazolidinedione photoprobe. Am J Physiol Endocrinol Metab 286, E252-E260 https://doi.org/10.1152/ajpendo.00424.2003
- Park JS, Kang DH, Bae SH (2015) p62 prevents carbonyl cyanide m-chlorophenyl hydrazine (CCCP)-induced apoptotic cell death by activating Nrf2. Biochem Biophys Res Commun 464, 1139-1144 https://doi.org/10.1016/j.bbrc.2015.07.093
- Livingston MJ, Wang J, Zhou J et al (2019) Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy 15, 2142-2162 https://doi.org/10.1080/15548627.2019.1615822
- Palikaras K, Lionaki E, Tavernarakis N (2015) Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death Differ 22, 1399-1401 https://doi.org/10.1038/cdd.2015.86
- Lee S, Jeong Y, Roe J, Huh H, Paik SH, Song J (2021) Mitochondrial dysfunction induced by callyspongiolide promotes autophagy-dependent cell death. BMB Rep 54, 227-232 https://doi.org/10.5483/BMBRep.2021.54.4.037
- Bakula D, Scheibye-Knudsen M (2020) MitophAging: mitophagy in aging and disease. Front Cell Dev Biol 8, 239 https://doi.org/10.3389/fcell.2020.00239
- Wang Bei, Nie J, Wu L et al (2019) AMPKα2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. Circ Res 122, 712- 729 https://doi.org/10.1161/CIRCRESAHA.117.312317
- Kusminski CM, Chen S, Ye R et al (2016) MitoNEET-Parkin effects in pancreatic α- and β-cells, cellular survival, and intrainsular cross talk. Diabetes 65, 1534-1555 https://doi.org/10.2337/db15-1323
- Lee S, Seok BG, Lee SJ, Chung SW (2022) Inhibition of mitoNEET attenuates LPS-induced inflammation and oxidative stress. Cell Death Dis 13, 127 https://doi.org/10.1038/s41419-022-04586-2