DOI QR코드

DOI QR Code

ON PARTIAL SUMS OF FOUR PARAMETRIC WRIGHT FUNCTION

  • Din, Muhey U (Department of Mathematics Government Post Graduate Islamia College Faisalabad)
  • Received : 2020.12.16
  • Accepted : 2021.02.09
  • Published : 2022.07.31

Abstract

Special functions and Geometric function theory are close related to each other due to the surprise use of hypergeometric function in the solution of the Bieberbach conjecture. The purpose of this paper is to provide a set of sufficient conditions under which the normalized four parametric Wright function has lower bounds for the ratios to its partial sums and as well as for their derivatives. The sufficient conditions are also obtained by using Alexander transform. The results of this paper are generalized and also improved the work of M. Din et al. [15]. Some examples are also discussed for the sake of better understanding of this article.

Keywords

References

  1. I. Aktas, On some geometric properties and Hardy class of q-Bessel functions, AIMS Math. 5 (2020), no. 4, 3156-3168. https://doi.org/10.3934/math.2020203
  2. I. Aktas, Partial sums of hyper-Bessel function with applications, Hacet. J. Math. Stat. 49 (2020), no. 1, 380-388. https://doi.org/10.15672/hujms.470930
  3. I. Aktas and H. Orhan, Partial sums of normalized Dini functions, J. Class. Anal. 9 (2016), no. 2, 127-135. https://doi.org/10.7153/jca-09-13
  4. I. Aktas and H. Orhan, On partial sums of normalized q-Bessel functions, Commun. Korean Math. Soc. 33 (2018), no. 2, 535-547. https://doi.org/10.4134/CKMS.c170204
  5. A. Baricz, Functional inequalities involving special functions, J. Math. Anal. Appl. 319 (2006), no. 2, 450-459. https://doi.org/10.1016/j.jmaa.2005.06.052
  6. A. Baricz, Functional inequalities involving special functions. II, J. Math. Anal. Appl. 327 (2007), no. 2, 1202-1213. https://doi.org/10.1016/j.jmaa.2006.05.006
  7. A. Baricz, Some inequalities involving generalized Bessel functions, Math. Inequal. Appl. 10 (2007), no. 4, 827-842. https://doi.org/10.7153/mia-10-76
  8. A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (2008), no. 1-2, 155-178. https://doi.org/10.5486/PMD.2008.4126
  9. A. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, 1994, Springer-Verlag, Berlin, 2010. https://doi.org/10.1007/978-3-642-12230-9
  10. A. Baricz and S. Ponnusamy, Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct. 21 (2010), no. 9-10, 641-653. https://doi.org/10.1080/10652460903516736
  11. A. Baricz and R. Szasz, The radius of convexity of normalized Bessel functions, Anal. Math. 41 (2015), no. 3, 141-151. https://doi.org/10.1007/s10476-015-0202-6
  12. L. Brickman, D. J. Hallenbeck, T. H. MacGregor, and D. R. Wilken, Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. 185 (1973), 413-428 (1974). https://doi.org/10.2307/199644
  13. E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl. 227 (1998), no. 1, 81-97. https://doi.org/10.1006/jmaa.1998.6078
  14. M. Caglar and E. Deniz, Partial sums of the normalized Lommel functions, Math. Inequal. Appl. 18 (2015), no. 3, 1189-1199. https://doi.org/10.7153/mia-18-92
  15. M. U. Din, M. Raza, N. Yagmur, and S. N. Malik, On partial sums of Wright functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 2, 79-90.
  16. R. Gorenflo, Y. Luchko, and F. Mainardi, Analytical properties and applications of the Wright function, Fract. Calc. Appl. Anal. 2 (1999), no. 4, 383-414.
  17. J.-L. Li and S. Owa, On partial sums of the Libera integral operator, J. Math. Anal. Appl. 213 (1997), no. 2, 444-454. https://doi.org/10.1006/jmaa.1997.5549
  18. Y. Luchko and R. Gorenflo, Scale-invariant solutions of a partial differential equation of fractional order, Fract. Calc. Appl. Anal. 1 (1998), no. 1, 63-78.
  19. F. Mainardi, Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics, Springer Verlag Wien, Austria, 1971.
  20. K. Mehrez, New integral representations for the Fox-Wright functions and its applications, J. Math. Anal. Appl. 468 (2018), no. 2, 650-673. https://doi.org/10.1016/j.jmaa.2018.08.053
  21. K. Mehrez, Some geometric properties of a class of functions related to the Fox-Wright functions, Banach J. Math. Anal. 14 (2020), no. 3, 1222-1240. https://doi.org/10.1007/s43037-020-00059-w
  22. S. S. Miller and P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc. 110 (1990), no. 2, 333-342. https://doi.org/10.2307/2048075
  23. H. Orhan and E. Gunes, Neighborhoods and partial sums of analytic functions based on Gaussian hypergeometric functions, Indian J. Math. 51 (2009), no. 3, 489-510.
  24. H. Orhan and N. Yagmur, Partial sums of generalized Bessel functions, J. Math. Inequal. 8 (2014), no. 4, 863-877. https://doi.org/10.7153/jmi-08-65
  25. H. Orhan and N. Yagmur, Geometric properties of generalized Struve functions, An. Stiint. Univ. Al. I. Cuza Ia,si. Mat. (N.S.) 63 (2017), no. 2, 229-244.
  26. S. Owa, H. M. Srivastava, and N. Saito, Partial sums of certain classes of analytic functions, Int. J. Comput. Math. 81 (2004), no. 10, 1239-1256. https://doi.org/10.1080/00207160412331284042
  27. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.
  28. M. Raza, M. U. Din, and S. N. Malik, Certain geometric properties of normalized Wright functions, J. Funct. Spaces 2016 (2016), Art. ID 1896154, 8 pp. https://doi.org/10.1155/2016/1896154
  29. St. Ruscheweyh and V. Singh, On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl. 113 (1986), no. 1, 1-11. https://doi.org/10.1016/0022-247X(86)90329-X
  30. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives, translated from the 1987 Russian original, Gordon and Breach Science Publishers, Yverdon, 1993.
  31. V. Selinger, Geometric properties of normalized Bessel functions, Pure Math. Appl. 6 (1995), no. 2-3, 273-277.
  32. T. Sheil-Small, A note on the partial sums of convex schlicht functions, Bull. London Math. Soc. 2 (1970), 165-168. https://doi.org/10.1112/blms/2.2.165
  33. H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), no. 1, 221-227. https://doi.org/10.1006/jmaa.1997.5361
  34. E. M. Silvia, On partial sums of convex functions of order α, Houston J. Math. 11 (1985), no. 3, 397-404.
  35. R. Szasz, About the starlikeness of Bessel functions, Integral Transforms Spec. Funct. 25 (2014), no. 9, 750-755. https://doi.org/10.1080/10652469.2014.915319
  36. R. Szasz and P. A. Kupan, About the univalence of the Bessel functions, Stud. Univ. Babes-Bolyai Math. 54 (2009), no. 1, 127-132.
  37. E. M. Wright, On the coefficients of power series having exponential singularities, J. London Math. Soc. 8 (1933), no. 1, 71-79. https://doi.org/10.1112/jlms/s1-8.1.71
  38. E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc. 10 (1935), 287-293.
  39. E. M. Wright, The generalized Bessel function of order greater than one, Quart. J. Math. Oxford Ser. 11 (1940), 36-48. https://doi.org/10.1093/qmath/os-11.1.36
  40. N. Yagmur and H. Orhan, Partial sums of generalized Struve functions, Miskolc Math. Notes 17 (2016), no. 1, 657-670. https://doi.org/10.18514/MMN.2016.1419