References
- I. Aktas, On some geometric properties and Hardy class of q-Bessel functions, AIMS Math. 5 (2020), no. 4, 3156-3168. https://doi.org/10.3934/math.2020203
- I. Aktas, Partial sums of hyper-Bessel function with applications, Hacet. J. Math. Stat. 49 (2020), no. 1, 380-388. https://doi.org/10.15672/hujms.470930
- I. Aktas and H. Orhan, Partial sums of normalized Dini functions, J. Class. Anal. 9 (2016), no. 2, 127-135. https://doi.org/10.7153/jca-09-13
- I. Aktas and H. Orhan, On partial sums of normalized q-Bessel functions, Commun. Korean Math. Soc. 33 (2018), no. 2, 535-547. https://doi.org/10.4134/CKMS.c170204
- A. Baricz, Functional inequalities involving special functions, J. Math. Anal. Appl. 319 (2006), no. 2, 450-459. https://doi.org/10.1016/j.jmaa.2005.06.052
- A. Baricz, Functional inequalities involving special functions. II, J. Math. Anal. Appl. 327 (2007), no. 2, 1202-1213. https://doi.org/10.1016/j.jmaa.2006.05.006
- A. Baricz, Some inequalities involving generalized Bessel functions, Math. Inequal. Appl. 10 (2007), no. 4, 827-842. https://doi.org/10.7153/mia-10-76
- A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (2008), no. 1-2, 155-178. https://doi.org/10.5486/PMD.2008.4126
- A. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, 1994, Springer-Verlag, Berlin, 2010. https://doi.org/10.1007/978-3-642-12230-9
- A. Baricz and S. Ponnusamy, Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct. 21 (2010), no. 9-10, 641-653. https://doi.org/10.1080/10652460903516736
- A. Baricz and R. Szasz, The radius of convexity of normalized Bessel functions, Anal. Math. 41 (2015), no. 3, 141-151. https://doi.org/10.1007/s10476-015-0202-6
- L. Brickman, D. J. Hallenbeck, T. H. MacGregor, and D. R. Wilken, Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. 185 (1973), 413-428 (1974). https://doi.org/10.2307/199644
- E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl. 227 (1998), no. 1, 81-97. https://doi.org/10.1006/jmaa.1998.6078
- M. Caglar and E. Deniz, Partial sums of the normalized Lommel functions, Math. Inequal. Appl. 18 (2015), no. 3, 1189-1199. https://doi.org/10.7153/mia-18-92
- M. U. Din, M. Raza, N. Yagmur, and S. N. Malik, On partial sums of Wright functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 2, 79-90.
- R. Gorenflo, Y. Luchko, and F. Mainardi, Analytical properties and applications of the Wright function, Fract. Calc. Appl. Anal. 2 (1999), no. 4, 383-414.
- J.-L. Li and S. Owa, On partial sums of the Libera integral operator, J. Math. Anal. Appl. 213 (1997), no. 2, 444-454. https://doi.org/10.1006/jmaa.1997.5549
- Y. Luchko and R. Gorenflo, Scale-invariant solutions of a partial differential equation of fractional order, Fract. Calc. Appl. Anal. 1 (1998), no. 1, 63-78.
- F. Mainardi, Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics, Springer Verlag Wien, Austria, 1971.
- K. Mehrez, New integral representations for the Fox-Wright functions and its applications, J. Math. Anal. Appl. 468 (2018), no. 2, 650-673. https://doi.org/10.1016/j.jmaa.2018.08.053
- K. Mehrez, Some geometric properties of a class of functions related to the Fox-Wright functions, Banach J. Math. Anal. 14 (2020), no. 3, 1222-1240. https://doi.org/10.1007/s43037-020-00059-w
- S. S. Miller and P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc. 110 (1990), no. 2, 333-342. https://doi.org/10.2307/2048075
- H. Orhan and E. Gunes, Neighborhoods and partial sums of analytic functions based on Gaussian hypergeometric functions, Indian J. Math. 51 (2009), no. 3, 489-510.
- H. Orhan and N. Yagmur, Partial sums of generalized Bessel functions, J. Math. Inequal. 8 (2014), no. 4, 863-877. https://doi.org/10.7153/jmi-08-65
- H. Orhan and N. Yagmur, Geometric properties of generalized Struve functions, An. Stiint. Univ. Al. I. Cuza Ia,si. Mat. (N.S.) 63 (2017), no. 2, 229-244.
- S. Owa, H. M. Srivastava, and N. Saito, Partial sums of certain classes of analytic functions, Int. J. Comput. Math. 81 (2004), no. 10, 1239-1256. https://doi.org/10.1080/00207160412331284042
- I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.
- M. Raza, M. U. Din, and S. N. Malik, Certain geometric properties of normalized Wright functions, J. Funct. Spaces 2016 (2016), Art. ID 1896154, 8 pp. https://doi.org/10.1155/2016/1896154
- St. Ruscheweyh and V. Singh, On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl. 113 (1986), no. 1, 1-11. https://doi.org/10.1016/0022-247X(86)90329-X
- S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives, translated from the 1987 Russian original, Gordon and Breach Science Publishers, Yverdon, 1993.
- V. Selinger, Geometric properties of normalized Bessel functions, Pure Math. Appl. 6 (1995), no. 2-3, 273-277.
- T. Sheil-Small, A note on the partial sums of convex schlicht functions, Bull. London Math. Soc. 2 (1970), 165-168. https://doi.org/10.1112/blms/2.2.165
- H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), no. 1, 221-227. https://doi.org/10.1006/jmaa.1997.5361
- E. M. Silvia, On partial sums of convex functions of order α, Houston J. Math. 11 (1985), no. 3, 397-404.
- R. Szasz, About the starlikeness of Bessel functions, Integral Transforms Spec. Funct. 25 (2014), no. 9, 750-755. https://doi.org/10.1080/10652469.2014.915319
- R. Szasz and P. A. Kupan, About the univalence of the Bessel functions, Stud. Univ. Babes-Bolyai Math. 54 (2009), no. 1, 127-132.
- E. M. Wright, On the coefficients of power series having exponential singularities, J. London Math. Soc. 8 (1933), no. 1, 71-79. https://doi.org/10.1112/jlms/s1-8.1.71
- E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc. 10 (1935), 287-293.
- E. M. Wright, The generalized Bessel function of order greater than one, Quart. J. Math. Oxford Ser. 11 (1940), 36-48. https://doi.org/10.1093/qmath/os-11.1.36
- N. Yagmur and H. Orhan, Partial sums of generalized Struve functions, Miskolc Math. Notes 17 (2016), no. 1, 657-670. https://doi.org/10.18514/MMN.2016.1419