Acknowledgement
The authors sincerely thank the anonymous reviewers for their careful reading, constructive comments to improve the quality of the first draft of paper.
References
- E. Ansari-Piri and E. Anjidani, On the stability of generalized derivations on Banach algebras, Bull. Iranian Math. Soc. 38 (2012), no. 1, 253-263.
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), no. 1, 167-173. https://doi.org/10.7153/mia-09-17
- A. Bodaghi, Cubic derivations on Banach algebras, Acta Math. Vietnam. 38 (2013), no. 4, 517-528. https://doi.org/10.1007/s40306-013-0031-2
- A. Bodaghi, Functional inequalities for generalized multi-quadratic mappings, J. Inequal. Appl. 2021 (2021), Paper No. 145, 13 pp. https://doi.org/10.1186/s13660-021-02682-z
- A. Bodaghi and I. A. Alias, Approximate ternary quadratic derivations on ternary Banach algebras and C*-ternary rings, Adv. Difference Equ. 2012 (2012), 11, 9 pp. https://doi.org/10.1186/1687-1847-2012-11
- A. Bodaghi, H. Moshtagh, and H. Dutta, Characterization and stability analysis of advanced multi-quadratic functional equations, Adv. Difference Equ. 2021 (2021), Paper No. 380, 15 pp. https://doi.org/10.1186/s13662-021-03541-3
- A. Bodaghi, C. Park, and S. Yun, Almost multi-quadratic mappings in non-Archimedean spaces, AIMS Math. 5 (2020), no. 5, 5230-5239. https://doi.org/10.3934/math.2020336
- J. Brzdek, J. Chudziak, and Z. Pales, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 (2011), no. 17, 6728-6732. https://doi.org/10.1016/j.na.2011.06.052
- K. Cieplinski, Generalized stability of multi-additive mappings, Appl. Math. Lett. 23 (2010), no. 10, 1291-1294. https://doi.org/10.1016/j.aml.2010.06.015
- K. Cieplinski, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput. Math. Appl. 62 (2011), no. 9, 3418-3426. https://doi.org/10.1016/j.camwa.2011.08.057
- K. Cieplinski, Ulam stability of functional equations in 2-Banach spaces via the fixed point method, J. Fixed Point Theory Appl. 23 (2021), Paper No. 33.
- M. Eshaghi Gordji, M. B. Ghaemi, G. H. Kim, and B. Alizadeh, Stability and superstability of generalized (θ, φ)-derivations in non-Archimedean algebras: fixed point theorem via the additive Cauchy functional equation, J. Appl. Math. 2011 (2011), Art. ID 726020, 11 pp. https://doi.org/10.1155/2011/726020
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, second edition, Birkhauser Verlag, Basel, 2009. https://doi.org/10.1007/978-3-7643-8749-5
- T. Miura, G. Hirasawa, and S.-E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319 (2006), no. 2, 522-530. https://doi.org/10.1016/j.jmaa.2005.06.060
- A. Najati and C. Park, Stability of homomorphisms and generalized derivations on Banach algebras, J. Inequal. Appl. 2009 (2009), Art. ID 595439, 12 pp.
- E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686
- J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Functional Analysis 46 (1982), no. 1, 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
- T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.2307/2042795
- P. Semrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory 18 (1994), no. 1, 118-122. https://doi.org/10.1007/BF01225216
- L. W. Tu, An Introduction to Manifolds, Universitext, Springer, New York, 2008.
- S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964.
- X. Zhao, X. Yang, and C.-T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal. 2013 (2013), Art. ID 415053, 8 pp. https://doi.org/10.1155/2013/415053