DOI QR코드

DOI QR Code

MULTI-DERIVATIONS AND SOME APPROXIMATIONS

  • Bodaghi, Abasalt (Department of Mathematics Garmsar Branch Islamic Azad University) ;
  • Feizabadi, Hassan (Department of Mathematics Arak Branch Islamic Azad University)
  • Received : 2021.09.06
  • Accepted : 2022.01.14
  • Published : 2022.07.31

Abstract

In this paper, we introduce the multi-derivations on rings and present some examples of such derivations. Then, we unify the system of functional equations defining a multi-derivation to a single formula. Applying a fixed point theorem, we will establish the generalized Hyers-Ulam stability of multi-derivations in Banach module whose upper bounds are controlled by a general function. Moreover, we give some important applications of this result to obtain the known stability outcomes.

Keywords

Acknowledgement

The authors sincerely thank the anonymous reviewers for their careful reading, constructive comments to improve the quality of the first draft of paper.

References

  1. E. Ansari-Piri and E. Anjidani, On the stability of generalized derivations on Banach algebras, Bull. Iranian Math. Soc. 38 (2012), no. 1, 253-263.
  2. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  3. R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), no. 1, 167-173. https://doi.org/10.7153/mia-09-17
  4. A. Bodaghi, Cubic derivations on Banach algebras, Acta Math. Vietnam. 38 (2013), no. 4, 517-528. https://doi.org/10.1007/s40306-013-0031-2
  5. A. Bodaghi, Functional inequalities for generalized multi-quadratic mappings, J. Inequal. Appl. 2021 (2021), Paper No. 145, 13 pp. https://doi.org/10.1186/s13660-021-02682-z
  6. A. Bodaghi and I. A. Alias, Approximate ternary quadratic derivations on ternary Banach algebras and C*-ternary rings, Adv. Difference Equ. 2012 (2012), 11, 9 pp. https://doi.org/10.1186/1687-1847-2012-11
  7. A. Bodaghi, H. Moshtagh, and H. Dutta, Characterization and stability analysis of advanced multi-quadratic functional equations, Adv. Difference Equ. 2021 (2021), Paper No. 380, 15 pp. https://doi.org/10.1186/s13662-021-03541-3
  8. A. Bodaghi, C. Park, and S. Yun, Almost multi-quadratic mappings in non-Archimedean spaces, AIMS Math. 5 (2020), no. 5, 5230-5239. https://doi.org/10.3934/math.2020336
  9. J. Brzdek, J. Chudziak, and Z. Pales, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 (2011), no. 17, 6728-6732. https://doi.org/10.1016/j.na.2011.06.052
  10. K. Cieplinski, Generalized stability of multi-additive mappings, Appl. Math. Lett. 23 (2010), no. 10, 1291-1294. https://doi.org/10.1016/j.aml.2010.06.015
  11. K. Cieplinski, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput. Math. Appl. 62 (2011), no. 9, 3418-3426. https://doi.org/10.1016/j.camwa.2011.08.057
  12. K. Cieplinski, Ulam stability of functional equations in 2-Banach spaces via the fixed point method, J. Fixed Point Theory Appl. 23 (2021), Paper No. 33.
  13. M. Eshaghi Gordji, M. B. Ghaemi, G. H. Kim, and B. Alizadeh, Stability and superstability of generalized (θ, φ)-derivations in non-Archimedean algebras: fixed point theorem via the additive Cauchy functional equation, J. Appl. Math. 2011 (2011), Art. ID 726020, 11 pp. https://doi.org/10.1155/2011/726020
  14. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  15. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  16. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, second edition, Birkhauser Verlag, Basel, 2009. https://doi.org/10.1007/978-3-7643-8749-5
  17. T. Miura, G. Hirasawa, and S.-E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319 (2006), no. 2, 522-530. https://doi.org/10.1016/j.jmaa.2005.06.060
  18. A. Najati and C. Park, Stability of homomorphisms and generalized derivations on Banach algebras, J. Inequal. Appl. 2009 (2009), Art. ID 595439, 12 pp.
  19. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686
  20. J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Functional Analysis 46 (1982), no. 1, 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
  21. T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.2307/2042795
  22. P. Semrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory 18 (1994), no. 1, 118-122. https://doi.org/10.1007/BF01225216
  23. L. W. Tu, An Introduction to Manifolds, Universitext, Springer, New York, 2008.
  24. S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964.
  25. X. Zhao, X. Yang, and C.-T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal. 2013 (2013), Art. ID 415053, 8 pp. https://doi.org/10.1155/2013/415053