Acknowledgement
The research of the second author was supported by U.S. National Security Agency (NSA) Grant H98230-14-1-0320.
References
- E. F. Abaya and G. L. Wise, Some remarks on the existence of optimal quantizers, Stat. Probab. Lett. 2 (1984), no. 6, 349-351. https://doi.org/10.1016/0167-7152(84)90045-2
- D. Comez and M. K. Roychowdhury, Quantization for uniform distributions of Cantor dusts on ℝ2, Topology Proc. 56 (2020), 195-218.
- Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms, SIAM Rev. 41 (1999), no. 4, 637-676. https://doi.org/10.1137/S0036144599352836
- A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academy publishers: Boston, 1992.
- R. M. Gray, J. C. Kieffer, and Y. Linde, Locally optimal block quantizer design, Inform. and Control 45 (1980), no. 2, 178-198. https://doi.org/10.1016/S0019-9958(80)90313-7
- S. Graf and H. Luschgy, The quantization of the Cantor distribution, Math. Nachr. 183 (1997), 113-133. https://doi.org/10.1002/mana.19971830108
- S. Graf and H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Mathematics, 1730, Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/BFb0103945
- R. M. Gray and D. L. Neuhoff, Quantization, IEEE Trans. Inform. Theory 44 (1998), no. 6, 2325-2383. https://doi.org/10.1109/18.720541
- A. Gyorgy and T. Linder, On the structure of optimal entropy-constrained scalar quantizers, IEEE Trans. Inform. Theory 48 (2002), no. 2, 416-427. https://doi.org/10.1109/18.978755
- J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. https://doi.org/10.1512/iumj.1981.30.30055
- R. D. Mauldin and M. Urbanski, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3) 73 (1996), no. 1, 105-154. https://doi.org/10.1112/plms/s3-73.1.105
- M. Moran, Hausdorff measure of infinitely generated self-similar sets, Monatsh. Math. 122 (1996), no. 4, 387-399. https://doi.org/10.1007/BF01326037
- L. Roychowdhury, Optimal quantization for nonuniform Cantor distributions, J. Interdiscip. Math. 22 (2019), 1325-1348. https://doi.org/10.1080/09720502.2019.1698401
- M. K. Roychowdhury, Quantization and centroidal Voronoi tessellations for probability measures on dyadic Cantor sets, J. Fractal Geom. 4 (2017), no. 2, 127-146. https://doi.org/10.4171/JFG/47
- M. K. Roychowdhury, Optimal quantization for the Cantor distribution generated by infinite similutudes, Israel J. Math. 231 (2019), no. 1, 437-466. https://doi.org/10.1007/s11856-019-1859-5
- P. L. Zador, Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Trans. Inform. Theory 28 (1982), no. 2, 139-149. https://doi.org/10.1109/TIT.1982.1056490