References
- G. M. Amiraliyev and Ya. D. Mamedov, Difference schemes on the uniform mesh for singular perturbed pseudo-parabolic equations, Turkish J. Math. 19 (1995), no. 3, 207-222.
- J. S. Angell and W. E. Olmstead, Singular perturbation analysis of an integro-differential equation modelling filament stretching, Z. Angew. Math. Phys. 36 (1985), no. 3, 487-490. https://doi.org/10.1007/BF00944639
- J. S. Angell and W. E. Olmstead, Singularly perturbed Volterra integral equations. II, SIAM J. Appl. Math. 47 (1987), no. 6, 1150-1162. https://doi.org/10.1137/0147077
- J. S. Angell and W. E. Olmstead, Singularly perturbed Volterra integral equations, SIAM J. Appl. Math. 47 (1987), no. 1, 1-14. https://doi.org/10.1137/0147001
- D. Arslan, A uniformly convergent numerical study on bakhvalov-shishkin mesh for singularly perturbed problem, Commun. Math. Appl. 11 (2020), no. 1, 161-171.
- M. Cakir, B. Gunes, and H. Duru, A novel computational method for solving nonlinear Volterra integro-differential equation, Kuwait J. Sci. 48 (2021), no. 1, 1-9.
- Z. Cen, A. Le, and A. Xu, Parameter-uniform hybrid difference scheme for solutions and derivatives in singularly perturbed initial value problems, J. Comput. Appl. Math. 320 (2017), 176-192. https://doi.org/10.1016/j.cam.2017.02.009
- A. De Gaetano and O. Arino, Mathematical modelling of the intravenous glucose tolerance test, J. Math. Biol. 40 (2000), no. 2, 136-168. https://doi.org/10.1007/s002850050007
- E. P. Doolan, J. J. H. Miller, and W. H. A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dun Laoghaire, 1980.
- P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, and G. I. Shishkin, Robust computational techniques for boundary layers, Applied Mathematics (Boca Raton), 16, Chapman & Hall/CRC, Boca Raton, FL, 2000.
- V. Horvat and M. Rogina, Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations, J. Comput. Appl. Math. 140 (2002), no. 1-2, 381-402. https://doi.org/10.1016/S0377-0427(01)00517-9
- G. S. Jordan, A nonlinear singularly perturbed Volterra integro-differential equation of nonconvolution type, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), no. 3-4, 235-247. https://doi.org/10.1017/S030821050001026X
- G. S. Jordan, Some nonlinear singularly perturbed Volterra integro-differential equations, in Volterra equations (Proc. Helsinki Sympos. Integral Equations, Otaniemi, 1978), 107-119, Lecture Notes in Math., 737, Springer, Berlin, 1979.
- M. K. Kadalbajoo and V. Gupta, A brief survey on numerical methods for solving singularly perturbed problems, Appl. Math. Comput. 217 (2010), no. 8, 3641-3716. https://doi.org/10.1016/j.amc.2010.09.059
- J.-P. Kauthen, Implicit Runge-Kutta methods for some integrodifferential-algebraic equations, Appl. Numer. Math. 13 (1993), no. 1-3, 125-134. https://doi.org/10.1016/0168-9274(93)90136-F
- J.-P. Kauthen, Implicit Runge-Kutta methods for singularly perturbed integrodifferential systems, Appl. Numer. Math. 18 (1995), no. 1-3, 201-210. https://doi.org/10.1016/0168-9274(95)00053-W
- J.-P. Kauthen, A survey of singularly perturbed Volterra equations, Appl. Numer. Math. 24 (1997), no. 2-3, 95-114. https://doi.org/10.1016/S0168-9274(97)00014-7
- A. H. Khater, A. B. Shamardan, D. K. Callebaut, and M. R. A. Sakran, Numerical solutions of integral and integro-differential equations using Legendre polynomials, Numer. Algorithms 46 (2007), no. 3, 195-218. https://doi.org/10.1007/s11075-007-9130-2
- M. Kumar, P. Singh, and H. K. Mishra, A recent survey on computational techniques for solving singularly perturbed boundary value problems, Int. J. Comput. Math. 84 (2007), no. 10, 1439-1463. https://doi.org/10.1080/00207160701295712
- V. Kumar and B. Srinivasan, An adaptive mesh strategy for singularly perturbed convection diffusion problems, Appl. Math. Model. 39 (2015), no. 7, 2081-2091. https://doi.org/10.1016/j.apm.2014.10.019
- T. Linss, Analysis of a Galerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection-diffusion problem, IMA J. Numer. Anal. 20 (2000), no. 4, 621-632. https://doi.org/10.1093/imanum/20.4.621
- T. Linss, Layer-adapted meshes for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 9-10, 1061-1105. https://doi.org/10.1016/S0045-7825(02)00630-8
- A. S. Lodge, J. B. McLeod, and J. A. Nohel, A nonlinear singularly perturbed Volterra integro-differential equation occurring in polymer rheology, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), no. 1-2, 99-137. https://doi.org/10.1017/S0308210500010167
- S. Marino, E. Beretta, and D. E. Kirschner, The role of delays in innate and adaptive immunity to intracellular bacterial infection, Math. Biosci. Eng. 4 (2007), no. 2, 261-286. https://doi.org/10.3934/mbe.2007.4.261
- J. J. H. Miller, E. O'Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, revised edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. https://doi.org/10.1142/9789814390743
- H. K. Mishra and S. Saini, Various numerical methods for singularly perturbed boundary value problems, Am. J. Appl. Math. Statist. 2 (2014), 129-142. https://doi.org/10.12691/ajams-2-3-7
- A. H. Nayfeh, Introduction to Perturbation Techniques, A Wiley-Interscience Publication, Wiley-Interscience, New York, 1981.
- R. E. O'Malley, Jr., Singular perturbation methods for ordinary differential equations, Applied Mathematical Sciences, 89, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-0977-5
- J. I. Ramos, Exponential techniques and implicit Runge-Kutta methods for singularlyperturbed Volterra integro-differential equations, Neural Parallel Sci. Comput. 16 (2008), no. 3, 387-404.
- H.-G. Roos, M. Stynes, and L. Tobiska, Numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/978-3-662-03206-0
- A. A. Salama and S. A. Bakr, Difference schemes of exponential type for singularly perturbed volterra integro-differential problems, Appl. Math. Model. 31 (2007), 866-879. https://doi.org/10.1016/j.apm.2006.02.007
- S. Sevgin, Numerical solution of a singularly perturbed Volterra integro-differential equation, Adv. Difference Equ. 2014 (2014), 171, 15 pp. https://doi.org/10.1186/1687-1847-2014-171
- Sumit, S. Kumar, and J. Vigo-Aguiar, Analysis of a nonlinear singularly perturbed Volterra integro-differential equation, J. Comput. Appl. Math. 404 (2022), Paper No. 113410. https://doi.org/10.1016/j.cam.2021.113410
- O. Yapman, G. M. Amiraliyev, and I. Amirali, Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay, J. Comput. Appl. Math. 355 (2019), 301-309. https://doi.org/10.1016/j.cam.2019.01.026