Acknowledgement
This work was started while the authors were visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM) in the Winter of 2019. We would like to thank VIASM for its financial support and hospitality. The first named author was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the grant Number 101.02-2019.304.
References
- T. Bayraktar, Zero distribution of random sparse polynomials, Michigan Math. J. 66 (2017), no. 2, 389-419. https://doi.org/10.1307/mmj/1490639822
- T. Bayraktar, T. Blum, and N. Levenberg, Pluripotential theory and convex bodies, Sb. Math. 209 (2018), no. 3, 352-384; translated from Mat. Sb. 209 (2018), no. 3, 67-101. https://doi.org/10.4213/sm8893
- T. Bayraktar, S. Hussung, N. Levenberg, and M. Perera, Pluripotential theory and convex bodies: a Siciak-Zaharjuta theorem, Comput. Methods Funct. Theory 20 (2020), no. 3-4, 571-590. https://doi.org/10.1007/s40315-020-00345-6
- E. Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4, 133-171.
- Z. B locki, Minicourse on pluripotential theory, University of Vienna, 2012.
- T. Bloom, Orthogonal polynomials in Cn, Indiana Univ. Math. J. 46 (1997), no. 2, 427-452. https://doi.org/10.1512/iumj.1997.46.1360
- T. Bloom and N. Levenberg, Capacity convergence results and applications to a Bernstein-Markov inequality, Trans. Amer. Math. Soc. 351 (1999), no. 12, 4753-4767. https://doi.org/10.1090/S0002-9947-99-02556-8
- T. Bloom, N. Levenberg, F. Piazzon, and F. Wielonsky, Bernstein-Markov: a survey, Dolomites Res. Notes Approx. 8 (2015), Special Issue, 75-91.
- T. Bloom and B. Shiffman, Zeros of random polynomials on ℂm, Math. Res. Lett. 14 (2007), no. 3, 469-479. https://doi.org/10.4310/MRL.2007.v14.n3.a11
- L. Bos and N. Levenberg, Bernstein-Walsh theory associated to convex bodies and applications to multivariate approximation theory, Comput. Methods Funct. Theory 18 (2018), no. 2, 361-388. https://doi.org/10.1007/s40315-017-0220-4
- N. Q. Dieu and P. H. Hiep, Weighted Bernstein-Markov property in ℂn, Ann. Polon. Math. 105 (2012), no. 2, 101-123. https://doi.org/10.4064/ap105-2-1
- M. Klimek, Pluripotential Theory, London Mathematical Society Monographs. New Series, 6, The Clarendon Press, Oxford University Press, New York, 1991.
- N. Levenberg and M. Perera, A global domination principle for P-pluripotential theory, in Complex Analysis and Spectral Theory, 11-19, Contemp. Math., 743, Centre Rech. Math. Proc, Amer. Math. Soc., RI, 2020. https://doi.org/10.1090/conm/743/14955
- J. Siciak, Extremal plurisubharmonic functions in Cn, Ann. Polon. Math. 39 (1981), 175-211. https://doi.org/10.4064/ap-39-1-175-211