Acknowledgement
The authors would like to thank the referees for their thorough comments and helpful suggestions.
References
- S. B. Bank and R. P. Kaufman, An extension of Holder's theorem concerning the gamma function, Funkcial. Ekvac. 19 (1976), no. 1, 53-63.
- Z. X. Chen, Complex Differences and Difference Equations, Science Press, Beijing, 2014.
- Z.-X. Chen and K. H. Shon, On growth of meromorphic solutions for linear difference equations, Abstr. Appl. Anal. 2013 (2013), Art. ID 619296, 6 pp. https://doi.org/10.1155/2013/619296
- Z.-X. Chen and H.-X. Yi, On sharing values of meromorphic functions and their differences, Results Math. 63 (2013), no. 1-2, 557-565. https://doi.org/10.1007/s00025-011-0217-7
- Y.-M. Chiang and S.-J. Feng, On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129. https://doi.org/10.1007/s11139-007-9101-1
- N. Cui and Z. X. Chen, Unicity for meromorphic solutions of some difference equations sharing three values of any meromorphic function, J. South China Normal Univ. Natur. Sci. Ed. 48 (2016), no. 4, 83-87.
- N. Cui and Z. X. Chen, Uniqueness for meromorphic solutions sharing three values with a meromorphic function to some linear difference equations, Chinese J. Contemp. Math. 38 (2017), no. 1, 13-22; translated from Chinese Ann. Math. Ser. A 38 (2017), no. 1, 13-22.
- R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487. https://doi.org/10.1016/j.jmaa.2005.04.010
- W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
- J. Heittokangas, R. Korhonen, I. Laine, and J. Rieppo, Uniqueness of meromorphic functions sharing values with their shifts, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 81-92. https://doi.org/10.1080/17476930903394770
- I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter Studies in Mathematics, 15, Walter de Gruyter & Co., Berlin, 1993. https://doi.org/10.1515/9783110863147
- S. Li and B. Chen, Uniqueness of meromorphic solutions of the difference equation R1(z)f(z + 1) + R2(z)f(z) = R3(z), Adv. Difference Equ. 2019 (2019), Paper No. 250, 11 pp. https://doi.org/10.1186/s13662-019-2194-1
- X.-M. Li and H.-X. Yi, Meromorphic functions sharing four values with their difference operators or shifts, Bull. Korean Math. Soc. 53 (2016), no. 4, 1213-1235. https://doi.org/10.4134/BKMS.b150609
- F. Lu, Q. Han, and W. Lu, On unicity of meromorphic solutions to difference equations of Malmquist type, Bull. Aust. Math. Soc. 93 (2016), no. 1, 92-98. https://doi.org/10.1017/S0004972715000787
- R. Nevanlinna, Le th'eor'eme de Picard-Borel et la th'eorie des fonctions meromorphes, Chelsea Publishing Co., New York, 1974.
- X. Qi, N. Li, and L. Yang, Uniqueness of meromorphic functions concerning their differences and solutions of difference Painleve equations, Comput. Methods Funct. Theory 18 (2018), no. 4, 567-582. https://doi.org/10.1007/s40315-018-0241-7
- S. Shimomura, Entire solutions of a polynomial difference equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 2, 253-266.
- N. Yanagihara, Meromorphic solutions of some difference equations, Funkcial. Ekvac. 23 (1980), no. 3, 309-326.
- C.-C. Yang and H.-X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.