References
- J.-M. Bernardo, Reference posterior distributions for Bayesian inference, J. Roy. Statist. Soc. Ser. B 41 (1979), no. 2, 113-147.
- W. H. Bonat and C. C. Kokonendji, Flexible Tweedie regression models for continuous data, J. Stat. Comput. Simul. 87 (2017), no. 11, 2138-2152. https://doi.org/10.1080/00949655.2017.1318876
- L. Bouchaala, A. Masmoudi, F. Gargouri, and A. Rebai, Improving algorithms for structure learning in bayesian networks using a new implicit score, Expert Systems with Applications 37 (2010), no. 7, 5470-5475. https://doi.org/10.1016/j.eswa.2010.02.065
- R. W. Butler and A. T. A. Wood, Laplace approximation for Bessel functions of matrix argument, J. Comput. Appl. Math. 155 (2003), no. 2, 359-382. https://doi.org/10.1016/S0377-0427(02)00874-9
- P. K. Dunn and G. K. Smyth, Series evaluation of Tweedie exponential dispersion model densities, Stat. Comput. 15 (2005), no. 4, 267-280. https://doi.org/10.1007/s11222-005-4070-y
- P. K. Dunn and G. K. Smyth, Evaluation of Tweedie exponential dispersion model densities by Fourier inversion, Stat. Comput. 18 (2008), no. 1, 73-86. https://doi.org/10.1007/s11222-007-9039-6
- A. Ghribi and A. Masmoudi, A compound Poisson model for learning discrete Bayesian networks, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), no. 6, 1767-1784. https://doi.org/10.1016/S0252-9602(13)60122-8
- A. Hassairi, A. Masmoudi, and C. C. Kokonendji, Implicit distributions and estimation, Comm. Statist. Theory Methods 34 (2005), no. 2, 245-252. https://doi.org/10.1080/03610920509342417
- H. B. Hassen, L. Bouchaala, A. Masmoudi, and A. Rebai, Learning parameters and structure of bayesian networks using an implicit framework, SCIYO. COM, 2010.
- A. Hassine, A. Ghribi, and A. Masmoudi, Tweedie regression model: a proposed statistical approach for modelling indoor signal path loss, Intern. J. Numer. Modelling, Electronic Networks, Devices and Fields 6 (2017), no. 30, e2243.
- B. Jorgensen, Exponential dispersion models, J. Roy. Statist. Soc. Ser. B 49 (1987), no. 2, 127-162.
- B. Jorgensen, The theory of dispersion models, Monographs on Statistics and Applied Probability, 76, Chapman & Hall, London, 1997.
- R. E. Kass and L. Wasserman, The selection of prior distributions by formal rules, J. Am. Stat. Assoc. 91 (1996), no. 435, 1343-1370. https://doi.org/10.1080/01621459.1996.10477003
- G. Letac, Lectures on natural exponential families and their variance functions, Monografias de Matematica, 50, Instituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, 1992.
- K. Masmoudi and A. Masmoudi, A new class of continuous Bayesian networks, Internat. J. Approx. Reason. 109 (2019), 125-138. https://doi.org/10.1016/j.ijar.2019.03.010
- J. Nelder, An alternative view of the splicing data, Appl. Stat. (1994) 469-476.
- C. P. Robert, The Bayesian Choice, Springer-Verlag, New York, 1994. https://doi.org/10.1007/978-1-4757-4314-2
- R. Tibshirani, Noninformative priors for one parameter of many, Biometrika 76 (1989), no. 3, 604-608. https://doi.org/10.1093/biomet/76.3.604
- M. C. K. Tweedie, An index which distinguishes between some important exponential families, in Statistics: applications and new directions (Calcutta, 1981), 579-604, Indian Statist. Inst., Calcutta, 1984.
- V. M. Zolotarev, One-dimensional stable distributions, translated from the Russian by H. H. McFaden, translation edited by Ben Silver, Translations of Mathematical Monographs, 65, American Mathematical Society, Providence, RI, 1986. https://doi.org/10.1090/mmono/065