DOI QR코드

DOI QR Code

ON THE EXISTENCE OF THE TWEEDIE POWER PARAMETER IMPLICIT ESTIMATOR

  • Ghribi, Abdelaziz (Laboratory of Probability and Statistics Sfax University) ;
  • Hassin, Aymen (Laboratory of Probability and Statistics Sfax University) ;
  • Masmoudi, Afif (Laboratory of Probability and Statistics Sfax University)
  • Received : 2021.08.10
  • Accepted : 2022.02.10
  • Published : 2022.07.31

Abstract

A special class of exponential dispersion models is the class of Tweedie distributions. This class is very significant in statistical modeling as it includes a number of familiar distributions such as Gaussian, Gamma and compound Poisson. A Tweedie distribution has a power parameter p, a mean m and a dispersion parameter 𝜙. The value of the power parameter lies in identifying the corresponding distribution of the Tweedie family. The basic objective of this research work resides in investigating the existence of the implicit estimator of the power parameter of the Tweedie distribution. A necessary and sufficient condition on the mean parameter m, suggesting that the implicit estimator of the power parameter p exists, was established and we provided some asymptotic properties of this estimator.

Keywords

References

  1. J.-M. Bernardo, Reference posterior distributions for Bayesian inference, J. Roy. Statist. Soc. Ser. B 41 (1979), no. 2, 113-147.
  2. W. H. Bonat and C. C. Kokonendji, Flexible Tweedie regression models for continuous data, J. Stat. Comput. Simul. 87 (2017), no. 11, 2138-2152. https://doi.org/10.1080/00949655.2017.1318876
  3. L. Bouchaala, A. Masmoudi, F. Gargouri, and A. Rebai, Improving algorithms for structure learning in bayesian networks using a new implicit score, Expert Systems with Applications 37 (2010), no. 7, 5470-5475. https://doi.org/10.1016/j.eswa.2010.02.065
  4. R. W. Butler and A. T. A. Wood, Laplace approximation for Bessel functions of matrix argument, J. Comput. Appl. Math. 155 (2003), no. 2, 359-382. https://doi.org/10.1016/S0377-0427(02)00874-9
  5. P. K. Dunn and G. K. Smyth, Series evaluation of Tweedie exponential dispersion model densities, Stat. Comput. 15 (2005), no. 4, 267-280. https://doi.org/10.1007/s11222-005-4070-y
  6. P. K. Dunn and G. K. Smyth, Evaluation of Tweedie exponential dispersion model densities by Fourier inversion, Stat. Comput. 18 (2008), no. 1, 73-86. https://doi.org/10.1007/s11222-007-9039-6
  7. A. Ghribi and A. Masmoudi, A compound Poisson model for learning discrete Bayesian networks, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), no. 6, 1767-1784. https://doi.org/10.1016/S0252-9602(13)60122-8
  8. A. Hassairi, A. Masmoudi, and C. C. Kokonendji, Implicit distributions and estimation, Comm. Statist. Theory Methods 34 (2005), no. 2, 245-252. https://doi.org/10.1080/03610920509342417
  9. H. B. Hassen, L. Bouchaala, A. Masmoudi, and A. Rebai, Learning parameters and structure of bayesian networks using an implicit framework, SCIYO. COM, 2010.
  10. A. Hassine, A. Ghribi, and A. Masmoudi, Tweedie regression model: a proposed statistical approach for modelling indoor signal path loss, Intern. J. Numer. Modelling, Electronic Networks, Devices and Fields 6 (2017), no. 30, e2243.
  11. B. Jorgensen, Exponential dispersion models, J. Roy. Statist. Soc. Ser. B 49 (1987), no. 2, 127-162.
  12. B. Jorgensen, The theory of dispersion models, Monographs on Statistics and Applied Probability, 76, Chapman & Hall, London, 1997.
  13. R. E. Kass and L. Wasserman, The selection of prior distributions by formal rules, J. Am. Stat. Assoc. 91 (1996), no. 435, 1343-1370. https://doi.org/10.1080/01621459.1996.10477003
  14. G. Letac, Lectures on natural exponential families and their variance functions, Monografias de Matematica, 50, Instituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, 1992.
  15. K. Masmoudi and A. Masmoudi, A new class of continuous Bayesian networks, Internat. J. Approx. Reason. 109 (2019), 125-138. https://doi.org/10.1016/j.ijar.2019.03.010
  16. J. Nelder, An alternative view of the splicing data, Appl. Stat. (1994) 469-476.
  17. C. P. Robert, The Bayesian Choice, Springer-Verlag, New York, 1994. https://doi.org/10.1007/978-1-4757-4314-2
  18. R. Tibshirani, Noninformative priors for one parameter of many, Biometrika 76 (1989), no. 3, 604-608. https://doi.org/10.1093/biomet/76.3.604
  19. M. C. K. Tweedie, An index which distinguishes between some important exponential families, in Statistics: applications and new directions (Calcutta, 1981), 579-604, Indian Statist. Inst., Calcutta, 1984.
  20. V. M. Zolotarev, One-dimensional stable distributions, translated from the Russian by H. H. McFaden, translation edited by Ben Silver, Translations of Mathematical Monographs, 65, American Mathematical Society, Providence, RI, 1986. https://doi.org/10.1090/mmono/065