Acknowledgement
The authors would like to express sincere thanks to the anonymous referee for his/her carefully reading of the manuscript and valuable comments and suggestions.
References
- G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrodinger-Poisson systems, J. Differential Equations 248 (2010), no. 3, 521-543. https://doi.org/10.1016/j.jde.2009.06.017
- G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl. 401 (2013), no. 2, 706-713. https://doi.org/10.1016/j.jmaa.2012.12.053
- X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in ℝ3, J. Differential Equations 252 (2012), no. 2, 1813-1834. https://doi.org/10.1016/j.jde.2011.08.035
- T. Hu and L. Lu, Multiplicity of positive solutions for Kirchhoff type problems in ℝ3, Topol. Methods Nonlinear Anal. 50 (2017), no. 1, 231-252. https://doi.org/10.12775/tmna.2017.028
- Y. Huang, Z. Liu, and Y. Wu, On finding solutions of a Kirchhoff type problem, Proc. Amer. Math. Soc. 144 (2016), no. 7, 3019-3033. https://doi.org/10.1090/proc/12946
- L. Huang, E. M. Rocha, and J. Chen, On the Schrodinger-Poisson system with a general indefinite nonlinearity, Nonlinear Anal. Real World Appl. 28 (2016), 1-19. https://doi.org/10.1016/j.nonrwa.2015.09.001
- C.-Y. Lei, J.-F. Liao, and C.-L. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents, J. Math. Anal. Appl. 421 (2015), no. 1, 521-538. https://doi.org/10.1016/j.jmaa.2014.07.031
- C.-Y. Lei, G.-S. Liu, and L.-T. Guo, Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity, Nonlinear Anal. Real World Appl. 31 (2016), 343-355. https://doi.org/10.1016/j.nonrwa.2016.01.018
- C.-Y. Lei, H. Suo, C. Chu, and L. Guo, On ground state solutions for a Kirchhoff type equation with critical growth, Comput. Math. Appl. 72 (2016), no. 3, 729-740. https://doi.org/10.1016/j.camwa.2016.05.027
- G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in ℝ3, J. Differential Equations 257 (2014), no. 2, 566-600. https://doi.org/10.1016/j.jde.2014.04.011
- S. Liang and J. Zhang, Existence of solutions for Kirchhoff type problems with critical nonlinearity in ℝ3, Nonlinear Anal. Real World Appl. 17 (2014), 126-136. https://doi.org/10.1016/j.nonrwa.2013.10.011
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145-201. https://doi.org/10.4171/RMI/6
- P.-L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, Part II, Rev. Mat. Iberoam. 2 (1985), no. 2, 45-121. https://doi.org/10.4171/RMI/12
- Z. Liu and C. Luo, Existence of positive ground state solutions for Kirchhoff type equation with general critical growth, Topol. Methods Nonlinear Anal. 49 (2017), no. 1, 165-182. https://doi.org/10.12775/tmna.2016.068
- Z. Liu, Z.-Q. Wang, and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrodinger-Poisson system, Ann. Mat. Pura Appl. (4) 195 (2016), no. 3, 775-794. https://doi.org/10.1007/s10231-015-0489-8
- A. Ourraoui, On a p-Kirchhoff problem involving a critical nonlinearity, C. R. Math. Acad. Sci. Paris 352 (2014), no. 4, 295-298. https://doi.org/10.1016/j.crma.2014.01.015
- A. Qian, J. Liu, and A. Mao, Ground state and nodal solutions for a Schrodinger-Poisson equation with critical growth, J. Math. Phys. 59 (2018), no. 12, 121509, 20 pp. https://doi.org/10.1063/1.5050856
- M. Shao and A. Mao, Signed and sign-changing solutions of Kirchhoff type problems, J. Fixed Point Theory Appl. 20 (2018), no. 1, Paper No. 2, 20 pp. https://doi.org/10.1007/s11784-018-0486-9
- J. Wang, L. Tian, J. Xu, and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations 253 (2012), no. 7, 2314-2351. https://doi.org/10.1016/j.jde.2012.05.023
- M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4146-1