DOI QR코드

DOI QR Code

A GENERALIZATION OF 𝓐2-GROUPS

  • 투고 : 2021.07.31
  • 심사 : 2021.11.08
  • 발행 : 2022.07.31

초록

In this paper, we determine the finite p-group such that the intersection of its any two distinct minimal nonabelian subgroups is a maximal subgroup of the two minimal nonabelian subgroups, and the finite p-group in which any two distinct 𝓐1-subgroups generate an 𝓐2-subgroup. As a byproduct, we answer a problem proposed by Berkovich and Janko.

키워드

과제정보

We owe our sincere gratitude to the referee. She/He read our paper very carefully and put forward a lot of suggestions. The author also thanks Professor Qinhai Zhang for his value suggestions. Their suggestions are quite valuable and helpful for improving our paper.

참고문헌

  1. L. An, L. Li, H. Qu, and Q. Zhang, Finite p-groups with a minimal non-abelian subgroup of index p (II), Sci. China Math. 57 (2014), no. 4, 737-753. https://doi.org/10.1007/s11425-013-4735-5
  2. Y. Berkovich, Groups of prime power order. Vol. 1, De Gruyter Expositions in Mathematics, 46, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. https://doi.org/10.1515/9783110208238.512
  3. Y. Berkovich and Z. Janko, Structure of finite p-groups with given subgroups, in Ischia group theory 2004, 13-93, Contemp. Math., 402, Israel Math. Conf. Proc, Amer. Math. Soc., Providence, RI, 2006. https://doi.org/10.1090/conm/402/07570
  4. Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 2, Walter de Gruyter. Berlin, New York, 2008.
  5. X. Fang and L. An, A classification of finite metahamiltonian p-groups, Commun. Math. Stat. 9 (2021), no. 2, 239-260. https://doi.org/10.1007/s40304-020-00229-0
  6. B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967.
  7. Z. Janko, On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4, J. Algebra 315 (2007), no. 2, 801-808. https://doi.org/10.1016/j.jalgebra.2007.02.010
  8. L. Redei, Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehoren, Comment. Math. Helv. 20 (1947), 225-264. https://doi.org/10.1007/BF02568131
  9. M. Xu, L. An, and Q. Zhang, Finite p-groups all of whose non-abelian proper subgroups are generated by two elements, J. Algebra 319 (2008), no. 9, 3603-3620. https://doi.org/10.1016/j.jalgebra.2008.01.045
  10. L. Zhang, The intersection of nonabelian subgroups of finite p-groups, J. Algebra Appl. 16 (2017), no. 1, 1750020, 9 pp. https://doi.org/10.1142/S0219498817500207
  11. Q. Zhang, Finite p-groups whose subgroups of given order are isomorphic and minimal non-abelian, Algebra Colloq. 26 (2019), no. 1, 1-8. https://doi.org/10.1142/S1005386719000026
  12. Q. Zhang, Finite p-groups all of whose minimal nonabelian subgroups are nonmetacyclic of order p3, Acta Math. Sin. (Engl. Ser.) 35 (2019), no. 7, 1179-1189. https://doi.org/10.1007/s10114-019-7308-x
  13. Q. Zhang, L. J. Deng, and M. Y. Xu, Finite p-groups in which any two noncommutative elements generate a subgroup of order p3, Acta Math. Sci. Ser. A (Chin. Ed.) 29 (2009), no. 3, 737-740.
  14. L. Zhang and H. Qu, At-groups satisfying a chain condition, J. Algebra Appl. 13 (2014), no. 4, 1350137, 5 pp. https://doi.org/10.1142/S0219498813501375
  15. Q. Zhang, X. Sun, L. An, and M. Xu, Finite p-groups all of whose subgroups of index p2 are abelian, Algebra Colloq. 15 (2008), no. 1, 167-180. https://doi.org/10.1142/S1005386708000163
  16. L. Zhang and J. Zhang, Finite p-groups all of whose A2-subgroups are generated by two elements, J. Group Theory 24 (2021), no. 1, 177-193. https://doi.org/10.1515/jgth2019-0159
  17. Q. Zhang, L. Zhao, M. Li, and Y. Shen, Finite p-groups all of whose subgroups of index p3 are abelian, Commun. Math. Stat. 3 (2015), no. 1, 69-162. https://doi.org/10.1007/s40304-015-0053-2