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A GENERALIZATION OF A2-GROUPS

Junqiang Zhang

Abstract. In this paper, we determine the finite p-group such that the

intersection of its any two distinct minimal nonabelian subgroups is a

maximal subgroup of the two minimal nonabelian subgroups, and the
finite p-group in which any two distinct A1-subgroups generate an A2-

subgroup. As a byproduct, we answer a problem proposed by Berkovich
and Janko.

1. Introduction

A finite group G is said to be minimal nonabelian if G is nonabelian but
all its proper subgroups are abelian. Obviously, every finite nonabelian group
contains a minimal nonabelian subgroup. In particular, every nonabelian p-
group, by [2, Proposition 10.28], can be generated by its minimal nonabelian
subgroups. Hence minimal nonabelian subgroups, in a sense, can be regarded
as “basic elements” of a nonabelian p-group, which play a fundamental role in
studying the structure of nonabelian p-groups.

Berkovich and Janko [3] introduced a more general concept than that of
minimal nonabelian p-groups. A nonabelian p-group is said to be an At-group,
t ∈ N, if it has a nonabelian subgroup of index pt−1 but all its subgroups of
index pt are abelian. Obviously, an A1-group is a minimal nonabelian p-group.
Given a nonabelian p-group G, there is a t ∈ N such that G is an At-group.
Hence, in a sense, the study of nonabelian p-groups can be regarded as that
of At-groups for some t ∈ N. For convenience, an abelian p-group is called an
A0-group. We also use G ∈ At to denote G is an At-group. At-groups were
classified up to isomorphism for t 6 3 in [8, 15,17].

In this paper, we continue the research about the structure of a nonabelian
p-group by imposing hypothesis on its A1-subgroups. Motivated by [13], our
interest is: what can be said about the p-groups all of whose two distinct A1-
subgroups generate an A2-subgroup? Such p-groups with at lease two distinct
A1-subgroups are called P1-groups. In addition, we observed that if G ∈ A2,
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then G has property P2: H1 ∩H2 is maximal in both H1 and H2 for any two
distinct A1-subgroups H1 and H2 of G. The p-groups with property P2 are
called P2-groups. The p-groups all of whose nonabelian proper subgroups are
generated by two elements are called P3-groups. We will prove that the class
of P1-groups is exactly the class of A2-groups, and hence [4, Problem 1016] is
solved. We also prove that the class of the P2-groups is a proper subclass of
the P3-groups. Although P3-groups were classified by Xu et al. in [9], it is not
easy to pick out P2-groups from the list of P3-groups by using the conditions of
P2-groups. Here we give a self-contained proof to classify P2-groups. It turns
out that

{A2-groups} = {P1-groups} ⊂ {P2-groups} ⊂ {P3-groups}.
It should be mentioned that the class of the A2-groups is also a proper subclass
of the finite p-groups classified by Fang and An in [5].

For a finite p-group G, we use M lG to denote M is a maximal subgroup
of G and the nth term of the lower central series of G is denoted by Gn and
G′ = G2. The other terminology and notations are standard, as in [6].

2. Preliminaries

In this section, we introduce the following lemmas which are used in this
paper.

Lemma 2.1 ([9, Lemma 2.2]). Suppose that G is a finite nonabelian p-group.
Then the following conditions are equivalent:

(1) G is a minimal nonabelian group.
(2) d(G) = 2 and |G′| = p.
(3) d(G) = 2 and Φ(G) = Z(G).

Lemma 2.2 ([2, Proposition 10.28]). A nonabelian p-group is generated by its
minimal nonabelian subgroups.

Lemma 2.3 ([9, Lemma 3.1]). Let G be a nonabelian two-generator p-group
with an abelian maximal subgroup. Assume |G/G′| = pm+1 and c(G) = c.
Then

(1) Φ(G) = G′Z(G);
(2) Z(M) = Z(G) and M ′ = G3,M3 = G4, . . . ,Mc−1 = Gc for any non-

abelian maximal subgroup M of G;
(3) G has the lower central complexion (m + 1, 1, 1, . . . , 1︸ ︷︷ ︸

c−1

). Particularly,

|Gc| = p.

Lemma 2.4 ([4, Proposition 72.1]). Let G be a metacyclic p-group. Then G
is an At-group if and only if |G′| = pt.

Lemma 2.5 ([2, §1, Exercise 6]). Let G be a nonabelian p-group. Then the
number of abelian subgroups of index p in G is 0, 1 or p + 1.
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Lemma 2.6. ([16, Theorem 3.2]) Let G be a finite p-group. Then the following
statements are equivalent:

(1) all nonabelian subgroups of G are generated by two elements.
(2) all subgroups of class 2 of G are generated by two elements.
(3) all A2-subgroups of G are generated by two elements.

3. Determining the P1-groups

Due to the classification of A3-groups in [17], we found that P1-groups must
be A2-groups. Although we can prove this by using the classification of A3-
groups, it is a tedious work since A3-groups have a long list of groups. Here
we give a short proof which is independent of the classification of A3-groups.

Lemma 3.1. Let G be a finite p-group and T =
⋂m

i=1 Mi, where Mi lG and
Mi 6= Mj if i 6= j. If m > 2 + p + · · ·+ pk−2, then |G : T | > pk.

Proof. Since Mi is maximal in G, by Correspondence Theorem, Mi/T is maxi-
mal in G/T . Obviously, Mi/T 6= Mj/T for i 6= j. Thus the number of maximal
subgroups of G/T is at least m. Notice that the number of maximal subgroups

of G/T is pd(G/T )−1
p−1 . Since m > 2 + p + · · · + pk−2, d(G/T ) > k. Obviously,

Φ(G) ≤ T . It follows that G/T is elementary abelian. Hence |G : T | > pk. �

Corollary 3.2. Let G be an At-group, where t > 2. Then Φ(G) is the inter-
section of nonabelian maximal subgroups. In particular, the Frattini subgroup
of A2-group is the intersection of all its A1-subgroups.

Proof. Let T be the intersection of all nonabelian maximal subgroups of G.
Then Φ(G) ≤ T . Following, we only need to show that |G : T | > |G : Φ(G)| =
pd(G).

If d(G) = 2, then the number of maximal subgroups of G is 1 + p. Since
t > 2, the number of abelian maximal subgroups of G is not equal 1 + p. Thus
the number of nonabelian maximal subgroups of G is at least p by Lemma 2.5.
Let M1 and M2 be two distinct nonabelian maximal subgroups of G. Then
|G : T | > |G : M1 ∩M2| = p2.

If d(G) > 3, then pd(G)−1 > 2 + p. Let m be the number of nonabelian
maximal subgroups of G. By Lemma 2.5, m > p2 + · · ·+pd(G)−1. Now we have

m > p2 + · · ·+ pd(G)−2 + pd(G)−1 > 2 + p + p2 + · · ·+ pd(G)−2.

By Lemma 3.1, we get |G : T | > pd(G). �

Theorem 3.3. Let G be a finite p-group. If G has at least two distinct A1-
subgroups, then G is a P1-group if and only if G is an A2-group.

Proof. (⇐) If G is an A2-group, then all A1-subgroups of G are of index p. It
follows that any two distinct A1-subgroups generate an A2-subgroup. Thus G
is a P1-group.
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(⇒) Let G be a counterexample of minimal order. Then G is an At-group,
where t > 3. Thus G has an A3-subgroup H. Then H is also a counterexample.
It follows by the minimality of |G| that H = G. So we may assume G is both
an A3-group and a P1-group.

Let M be an A2-subgroup of G and H an A1-subgroup of M . Notice that
G is an A3-group. We have H lM l G. By Lemma 2.2, there exists A1-
subgroup A of G such that A � M . It follows that G = AM . Since G is a
P1-group, 〈H,A〉 is an A2-subgroup. It follows that H l 〈H,A〉, A l 〈H,A〉
and 〈H,A〉lG. Thus |H| = |A| and 〈H,A〉 = HA. Now we have

|A|
|A ∩H|

=
|HA|
|H|

= p.

Notice that H l M and A � M . We have A ∩ H ≤ A ∩ M < A. Thus
A ∩M = A ∩ H l A. By the arbitrariness of H and Corollary 3.2, we get
A ∩M ≤ Φ(M). Now we have

p2 6 |M : Φ(M)| 6 |M : A ∩M | = |AM : A| = |G : A| = p2.

We get A ∩M = Φ(M) and |M : Φ(M)| = p2. So d(M) = 2. That is, all A2-
subgroups of G are generated by two elements. It follows from Lemma 2.6 that
d(G) = 2. Thus we have Φ(G) = 〈H,A〉∩M = H. Notice that the arbitrariness
of H. By Lemma 2.2, we get that M = Φ(G). This is a contradiction. �

A direct result of Theorem 3.3 is:

Corollary 3.4. An A3-group can be generated by its two distinct A1-subgroups.

Remark 3.5. For t > 4, there exists At-group can not be generated by its two
A1-subgroups. For example, G = H ×K, where H is an A1-group and K is
an elementary abelian group of order pt−1. In this case, G is an At-group by
[1, Corollary 2.4]. Obviously, d(G) = t + 1 > 5. Thus G can not be generated
by its two A1-subgroups.

4. Determining the P2-groups

In this section, we establish a criterion for a nonabelian p-group to be a
P2-group. Based on the criterion, the P2-groups are classified. It turns out
that the class of the P2-groups is a proper subclass of the P3-groups. For
convenience, we list the results of the classification of the P3-groups, which
were obtained by Xu et al. in [9]. Following Xu et al. [9],
Bp denotes the class of p-groups whose non-abelian proper subgroups are

two-generator,
B′p = {G ∈ Bp | G is neither abelian nor minimal non-abelian},
Dp = {G ∈ B′p | G has an abelian maximal subgroup},
Mp = {G ∈ B′p | G has no abelian maximal subgroup},
Dp(2) = {G ∈ Dp | d(G) = 2} and Dp(3) = {G ∈ Dp | d(G) = 3},
D′p(2) = {G ∈ Dp(2) | G is not of maximal class} and
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M′p = {G ∈Mp | G is neither metacyclic nor 3-group of maximal class}.
In terms ofAt-groups and notations mentioned above, the [9, Main Theorem]

can be stated as follows.

Theorem 4.1. Assume G is a P3-group. Then G is one of the following
groups:

(1) At-groups, where t 6 2;
(2) metacyclic groups;
(3) p-groups of maximal class with an abelian maximal subgroup;
(4) 3-groups of maximal class;
(5) D′p(2)-groups with p > 3;
(6) M′3-groups with a unique minimal non-abelian maximal subgroup;
(7) M′p-groups having no minimal non-abelian maximal subgroup, where

p > 3.

Remark 4.2. From the argument in [9] or a simple check, it is not difficult to
get the converse of Theorem 4.1 is also true.

Lemma 4.3. Let G be an At-group with t > 1. Then the following statements
are equivalent:

(1) the index of all A1-subgroups of G are equal.
(2) the index of all Ak-subgroups of G are pt−k for any k ∈ {1, 2, . . . , t}.
(3) all nonabelian subgroups of index pt−k are Ak-subgroups for any k ∈
{1, 2, . . . , t}.

Proof. (3)⇒ (1): It is obvious.
(1) ⇒ (2): Let K be an Ak-subgroup of G, where k ∈ {1, 2, . . . , t}. Then

K has an A1-subgroup T of index pk−1. Since G is an At-group, G has A1-
subgroups of index pt−1. It follows from (1) that |G : T | = pt−1. So

|G : K| = |G : T |
|K : T |

=
pt−1

pk−1
= pt−k.

(2) ⇒ (3): Let K1 be a nonabelian subgroup of index pt−k, where k ∈
{1, 2, . . . , t}. Assume K1 is an As-group. Then K1 has an A1-subgroup H of
index ps−1. It follows that

|G : H| = |G : K1||K1 : H| = pt−kps−1 = pt+s−k−1.

Since G is an At-group, G has A1-subgroups of index pt−1. By (2), we get
|G : H| = pt−1. It follows that pt+s−k−1 = pt−1 and so s = k. Thus K1 is an
Ak-group. �

Following the notation of [10], the intersection of all A1-subgroups of a p-
group G is denoted by IA1

(G). We use Ak(G) to denote the set consisting of
the Ak-subgroups of a p-group G.

Theorem 4.4. Let G be an At-group with t > 3. Then the following statements
are equivalent:
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(1) G is a P2-group.
(2) IA1

(G)lK for any A1-subgroup K of G.
(3) The orders of all A1-subgroups of G are equal, and all A2-subgroups of

G are generated by two elements and have a same Frattini subgroup.

Proof. (2)⇒ (1): It is obvious.
(1) ⇒ (3): Let H1 and H2 be two distinct A1-subgroups of G. Since G is

P2-group, H1 ∩H2lHi for i = 1, 2. Thus |H1| = |H2|. By the arbitrariness of
Hi, we get the orders of all A1-subgroups of G are equal.

Let M ∈ A2(G) and H ∈ A1(M). Then |M : H| = p. Since G is an
At-group with t > 3, there exists A ∈ A1(G)\A1(M) by Lemma 2.2. Thus
A ∩ H ≤ A ∩M < A. Since G is a P2-group, A ∩ H l A. It follows that
A ∩ H = A ∩M l A. Notice that |H| = |A|. We get A ∩M = A ∩ H l H.
By the arbitrariness of H, we get A ∩M ≤ IA1

(M). Notice that M ∈ A2. By
Lemma 3.2, we get IA1

(M) = Φ(M). Now, we have

p2 6 |M : Φ(M)| = |M : IA1
(M)| 6 |M : A∩M | = |M : H| · |H : A∩M | = p2.

It follows that A∩M = Φ(M) and d(M) = 2. Particularly, Φ(M) ≤ A. Notice
that Φ(M) ≤ H. Then Φ(M) ≤ IA1

(G). It follows that

IA1
(G) ≤ IA1

(M) = Φ(M) ≤ IA1
(G).

Thus Φ(M) = IA1(G). By the arbitrariness of M , we get all A2-subgroups of
G have a same Frattini subgroup.

(3)⇒ (2): Let K be an A1-subgroup of G and M a subgroup of G such that
KlM . Since the orders of all A1-subgroups of G are equal, M is an A2-group
by Lemma 4.3. Since all A2-subgroups of G have a same Frattini subgroup,
we may let T be the same Frattini subgroup of A2-subgroups of G. It follows
that T = Φ(M) and so T ≤ K. By the arbitrariness of K, we get T ≤ IA1

(G).
Now, we have

Φ(M) = T ≤ IA1
(G) < K lM.

Since M is an A2-group, by the hypothesis, d(M) = 2 and so |M : Φ(M)| = p2.
It follows that Φ(M) = IA1(G) and IA1(G)lK. �

Combining with Lemma 2.6 and Theorem 4.4, we have:

Corollary 4.5. Assume G ∈ At, where t > 3. If G ∈ P2, then G ∈ P3.

In following, we will classify the P2-groups. Since A0-, A1- and A2-groups
are P2-groups, we assume G is an At-group with t > 3 in Theorem 4.6 and
Theorem 4.9.

Theorem 4.6. Let G be an At-group with an abelian subgroup of index p,
where t > 3. Then G ∈ P2 if and only if G ∈ P3.

Proof. (⇒) The conclusion follows by Corollary 4.5.
(⇐) Since G ∈ At with t > 3, all A2-subgroups of G are proper subgroups.

Thus all A2-subgroups of G are generated by two elements. It follows by
Lemma 2.6 that all nonabelian subgroups of G are generated by two elements.
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By Theorem 4.4, it is enough to show that the orders of all A1-subgroups of
G are equal and all A2-subgroups have a same Frattini subgroup.

Let K be a nonabelian subgroup of index pk of G. We assert that K ′ = Gk+1.
Take a maximal subgroup M of G such that K ≤ M . Then |M : K| = pk−1.
Assume c(G) = c. Then, by Lemma 2.3(2), we get

M2 = G3,M3 = G4, . . . ,Mc−1 = Gc.

By induction on k, and by using Lemma 2.3(2), we get K ′ = Mk = Gk+1.
Let A be an A1-subgroup of G. Then A′ = Gi for some i ≤ c. By Lemma

2.1, we have |A′| = p. By Lemma 2.3(3), we get |Gc| = p. It follows that
A′ = Gc and so |G : A| = pc−1. Thus the order of all A1-subgroups of G are
equal.

Let H1 and H2 be two distinct A2-subgroups of G. Then |G : H1| =
|G : H2| = pc−2 by Lemma 4.3. It follows that H ′1 = H ′2 = Gc−1. By Lemma
2.3(2), we get Z(H1) = Z(H2) = Z(G). It follows by Lemma 2.3(1) that

Φ(H1) = H ′1Z(H1) = H ′1Z(G) = H ′2Z(G) = Φ(H2).

That is, all A2-subgroups have a same Frattini subgroup. �

Remark 4.7. By using Theorem 4.6 to check the groups in Theorem 4.1, we
have P2-groups with an abelian subgroup of index p are the groups (3) and (5).

Lemma 4.8 ([9, Lemma 5.3 and Theorem 5.4]). Let G be one of the groups (7)
of Theorem 4.1, i.e., G is aM′p-group having no minimal non-abelian maximal
subgroup, where p > 3. Then

(1) |G| = p6 and |G4| = p;
(2) K ∈ D′p(2), Φ(K) = G3 and K3 = G4 for any maximal subgroup K of

G.

Theorem 4.9. Let G be an At-group without any abelian subgroup of index p,
where t > 3. Then G is a P2-group if and only if G is one of the groups (7) in
Theorem 4.1.

Proof. Assume that G is a P2-group. Then, by Corollary 4.5, G ∈ P3. Thus
G is one of the groups listed in Theorem 4.1. If G has an A1-subgroup of
index p, by Theorem 4.4, we get all A1-subgroups are of index p. Thus G is an
A2-group. This contradicts t > 3. Thus G has no A1-subgroup of index p. By
hypothesis, G has no abelian subgroup of index p. By a simple check to those
groups in Theorem 4.1, we get G is a metacyclic p-group or one of the groups
(7) in Theorem 4.1.

Assume G is a metacyclic p-group. Let G = 〈a, b〉 and G′ < 〈a〉. Then
M1 = 〈ap, b〉 and M2 = 〈a, bp〉 are two distinct maximal subgroups of G. Since
G has no abelian subgroup of index p, M1 and M2 are nonabeian maximal
subgroups of G. Since G is a P2-group, the orders of all A1-subgroups of G
are equal by Theorem 4.4. It follows by Lemma 4.3 that M1 and M2 are
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At−1-subgroups of G. From Lemma 2.4 we get |M ′1| = |M ′2| = pt−1 and so
o([ap, b]) = o([a, bp]) = pt−1.

Let H1 = 〈apt−2

, b〉 and H2 = 〈apt−3

, bp〉. Notice that t > 3. We get

[ap
t−2

, b] = [ap, b]p
t−3

and [ap
t−3

, bp] = [a, bp]p
t−3

.

It follows that

|H ′1| = o([ap
t−2

, b]) = p2 and |H ′2| = o([ap
t−3

, bp]) = p2.

From Lemma 2.4 we get H1 and H2 are A2-subgroups of G. Now, it is obvious
that bp ∈ Φ(H1) and bp 6∈ Φ(H2). This implies that Φ(H1) 6= Φ(H2), which
contradicts G is a P2-group by Theorem 4.4. Hence G is one of the groups (7)
in Theorem 4.1.

Conversely, if G is one of the groups (7) in Theorem 4.1, by Lemma 4.8,
K ∈ D′p(2) and |K3| = |G4| = p for any maximal subgroup K of G. Let H be
a nonabelian subgroup of index p of K. Since K ∈ D′p(2), H ′ = K3 by Lemma
2.3(2). It follows that |H ′| = p. Thus, by Lemma 2.1, H is an A1-subgroup.
By the arbitrariness of H, we get K is an A2-subgroup. By Lemma 4.8(2),
Φ(K) = G3. It follows by Theorem 4.4 that G is a P2-group. �

Notice that At-groups with t 6 2 are P2-groups. Now, combining Theorem
4.9 and Remark 4.7, we have:

Theorem 4.10. Let G be a finite p-group. Then G is a P2-group if and only
if G is one of the groups (1), (3), (5) and (7) listed in Theorem 4.1.

An At-group G satisfies a chain condition if every Ai-subgroup of G is con-
tained in an Ai+1-subgroup for all i ∈ {0, 1, 2, . . . , t − 1}. The concept was
introduced by Zhang and Qu in [14]. Zhang in [11] proved that for t > 3, an
At-group G satisfies a chain condition if and only if G is an ordinary metcyclic
p-group. We call an At-group G satisfies a weakly chain condition if the in-
cluded relations hold for i ∈ {1, 2, . . . , t − 1}. It is easy to see that G satisfies
a weakly chain condition is equivalent to (3) in Lemma 4.3. In other words, G
satisfies a weakly chain condition is equivalent to the orders of all A1-subgroups
of G are equal. By Theorem 4.4(3) we get P2-groups satisfy (1) in Lemma 4.3,
That is, P2-groups satisfies a weakly chain condition. Conversely, it is not true
in general. We propose the following.

Problem. Classify the p-groups satisfying a weak chain condition. Equiva-
lently, classify the p-groups all of whose A1-subgroups have the same order.

Remark 4.11. If the p-groups all of whose A1-subgroups are of order p3, then
for p = 2, such p-groups were classified by Janko in [7]. For p odd prime, the p-
groups all of whose A1-subgroups are nonmetacyclic of order p3 were classified
by Zhang in [12].
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