Acknowledgement
We owe our sincere gratitude to the referee. She/He read our paper very carefully and put forward a lot of suggestions. The author also thanks Professor Qinhai Zhang for his value suggestions. Their suggestions are quite valuable and helpful for improving our paper.
References
- L. An, L. Li, H. Qu, and Q. Zhang, Finite p-groups with a minimal non-abelian subgroup of index p (II), Sci. China Math. 57 (2014), no. 4, 737-753. https://doi.org/10.1007/s11425-013-4735-5
- Y. Berkovich, Groups of prime power order. Vol. 1, De Gruyter Expositions in Mathematics, 46, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. https://doi.org/10.1515/9783110208238.512
- Y. Berkovich and Z. Janko, Structure of finite p-groups with given subgroups, in Ischia group theory 2004, 13-93, Contemp. Math., 402, Israel Math. Conf. Proc, Amer. Math. Soc., Providence, RI, 2006. https://doi.org/10.1090/conm/402/07570
- Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 2, Walter de Gruyter. Berlin, New York, 2008.
- X. Fang and L. An, A classification of finite metahamiltonian p-groups, Commun. Math. Stat. 9 (2021), no. 2, 239-260. https://doi.org/10.1007/s40304-020-00229-0
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967.
- Z. Janko, On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4, J. Algebra 315 (2007), no. 2, 801-808. https://doi.org/10.1016/j.jalgebra.2007.02.010
- L. Redei, Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehoren, Comment. Math. Helv. 20 (1947), 225-264. https://doi.org/10.1007/BF02568131
- M. Xu, L. An, and Q. Zhang, Finite p-groups all of whose non-abelian proper subgroups are generated by two elements, J. Algebra 319 (2008), no. 9, 3603-3620. https://doi.org/10.1016/j.jalgebra.2008.01.045
- L. Zhang, The intersection of nonabelian subgroups of finite p-groups, J. Algebra Appl. 16 (2017), no. 1, 1750020, 9 pp. https://doi.org/10.1142/S0219498817500207
- Q. Zhang, Finite p-groups whose subgroups of given order are isomorphic and minimal non-abelian, Algebra Colloq. 26 (2019), no. 1, 1-8. https://doi.org/10.1142/S1005386719000026
- Q. Zhang, Finite p-groups all of whose minimal nonabelian subgroups are nonmetacyclic of order p3, Acta Math. Sin. (Engl. Ser.) 35 (2019), no. 7, 1179-1189. https://doi.org/10.1007/s10114-019-7308-x
- Q. Zhang, L. J. Deng, and M. Y. Xu, Finite p-groups in which any two noncommutative elements generate a subgroup of order p3, Acta Math. Sci. Ser. A (Chin. Ed.) 29 (2009), no. 3, 737-740.
- L. Zhang and H. Qu, At-groups satisfying a chain condition, J. Algebra Appl. 13 (2014), no. 4, 1350137, 5 pp. https://doi.org/10.1142/S0219498813501375
- Q. Zhang, X. Sun, L. An, and M. Xu, Finite p-groups all of whose subgroups of index p2 are abelian, Algebra Colloq. 15 (2008), no. 1, 167-180. https://doi.org/10.1142/S1005386708000163
- L. Zhang and J. Zhang, Finite p-groups all of whose A2-subgroups are generated by two elements, J. Group Theory 24 (2021), no. 1, 177-193. https://doi.org/10.1515/jgth2019-0159
- Q. Zhang, L. Zhao, M. Li, and Y. Shen, Finite p-groups all of whose subgroups of index p3 are abelian, Commun. Math. Stat. 3 (2015), no. 1, 69-162. https://doi.org/10.1007/s40304-015-0053-2