DOI QR코드

DOI QR Code

기-액 하이브리드 대기압 플라즈마 반응기 제작 및 특성 분석

Fabrication and Characterization of Gas-liquid Hybrid Reactor Equipped with Atmospheric Pressure Plasma

  • 권흥수 (강원대학교 화공.생물공학부) ;
  • 이원규 (강원대학교 화공.생물공학부)
  • Kwon, Heoung Su (Division of Chemical Engineering and Bioengineering, Kangwon National University) ;
  • Lee, Won Gyu (Division of Chemical Engineering and Bioengineering, Kangwon National University)
  • 투고 : 2022.01.13
  • 심사 : 2022.02.23
  • 발행 : 2022.08.01

초록

3가지 종류의 기-액 하이브리드 수평형, 수직형 그리고 needle-to-cylinder형 플라즈마 반응기가 제작되었다. 이들 반응기를 통하여 대기압 플라즈마 방전에서 발생하는 반응 활성종 생성과 전극 내의 전위차를 통한 세정성분의 기-액 활성화 반응을 일으키는 고효율 친환경 기반의 세정 개념을 제시하였다. 세정성능에 대한 효율성을 비교한 결과, needle-to-cylinder형 반응기가 가장 우수한 특성을 가졌다. 본 연구를 통해 기-액 하이브리드 대기압 플라즈마 반응기가 반도체 공정 등 초정밀 세정공정에 응용 가능성이 있음을 확인하였다.

Three types of gas-liquid hybrid horizontal, vertical and needle-to-cylinder plasma reactors were fabricated. Through these reactors, a high-efficiency, eco-friendly cleaning concept that generates reactive active species generated in atmospheric plasma discharge and gas-liquid activation reaction of cleaning components through the potential difference within the electrode was presented. As a result of comparing the efficiency for cleaning performance, the needle-to-cylinder type reactor had the best characteristics. Through this study, it was confirmed that the gas-liquid hybrid atmospheric pressure plasma reactor has the potential to be applied to ultra-precision cleaning processes such as semiconductor processes.

키워드

과제정보

본 연구는 대한민국 정부의 재원으로 한국연구재단의 지원으로 수행되었습니다(NRF-2019R1A2C1005445).

참고문헌

  1. Reinhardt K. A. and Kern W., Handbook of Silicon Wafer Cleaning Technology, 3rd ed., Elsevier(2018).
  2. Ko, C. K. and Lee, W. G., "Characteristics of Semi-Aqueous Vleaning Solution with Carboxylic Acid for the Removal of Copper Oxides Residues," Korean Chem. Eng. Res., 54(4), 548-554(2016). https://doi.org/10.9713/kcer.2016.54.4.548
  3. Yamabe C., Takeshita F., Miichi T., Hayashi N. and Ihara S., "Water Treatment Using Discharge on the Surface of a Bubble in Water," Plasma Process. Polym., 2, 246-251(2005). https://doi.org/10.1002/ppap.200400077
  4. Kim M. S., Ryu K. H. and Lee K.J., "Analysis of Water Cleaning Solution Characteristics and Metal Dissolution Behavior according to the Addition of Chelating Agent," J. Korean Powder Metall. Inst., 28(1), 25-30(2021) https://doi.org/10.4150/KPMI.2021.28.1.25
  5. Nomura S. and Toyota H., "Submerged Plasma Generator, Method of Generating Plasma in Liquid and Method of Decomposing Toxi Substance with Plasma in Liquid," Korean Patent No. 10-0709923(2007).
  6. Bruggeman, P. and Leys, C., "Non-thermal Plasmas in and in contact with Liquids," J. Phys. D:Appl. Phys., 42(5), 053001(2009). https://doi.org/10.1088/0022-3727/42/5/053001
  7. Chang, J., Dickson, S., Guo, Y., Urashima, K. and Emelko, M., Electrohydraulic Discharge Direct Plasma Water Treatment Processes: Advanced Plasma Technology, Wiley-VCH, 421-433(2008).
  8. Locke, B. R. and Shih, K., "Review of the Methods to Form Hydrogen Peroxide in Electrical Discharge Plasma with Liquid Water," Plasma Sources Sci. Technol., 20(3), 034006(2011). https://doi.org/10.1088/0963-0252/20/3/034006
  9. Schoenbach, K., Kolb, J., Xiao, S., Katsuki, S., Minamitani, Y. and Joshi, R., "Electrical Breakdown of Water in Microgaps," Plasma Sources Sci. Technol., 17(2), 024010(2008). https://doi.org/10.1088/0963-0252/17/2/024010
  10. Kwon, H. S. and Lee, W. G., "Atmospheric Pressure Plasma Apparatus," Korean Patent No. 10-1337047(2013).
  11. Baga, A. N., Johnson, G. R. A., Nazhat, N. B. and Nazhat, R. A. S., "A Simple Spectrophotometric Determination of Hydrogen Peroxide at Low Concentrations in Aqueous Solution," Anal. Chim. Acta, 203, 349-353(1988).
  12. Lu, J., Garland, J., Pettit, C., Babu, S. and Roy, D., "Relative Roles of H2O2 and Glycine in CMP of Copper Studied with Impedance Spectroscopy," J. Electrochem. Soc., 151(10), G717-722(2004). https://doi.org/10.1149/1.1795256