DOI QR코드

DOI QR Code

소결된 백금주석 촉매의 산소 처리에 의한 재분산 연구

Redispersion of Sintered PtSn Catalyst by Oxygen Treatment

  • 최이선 (한경대학교 식품생명화학공학부) ;
  • 김태희 (한경대학교 식품생명화학공학부) ;
  • 고형림 (한경대학교 식품생명화학공학부)
  • Choi, Yi Sun (School of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Kim, Tae hee (School of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Koh, Hyoung Lim (School of Food Biotechnology and Chemical Engineering, Hankyong National University)
  • 투고 : 2022.02.14
  • 심사 : 2022.03.23
  • 발행 : 2022.08.01

초록

Pt, PtSn 촉매를 제조한 후, 재분산 연구를 위해 수소분위기에서 소결시킨 후 여러 온도에서 산소처리를 적용하여 백금주석입자의 재분산 정도를 확인하고, 프로판 탈수소 반응실험으로 촉매의 활성을 측정하여 촉매의 물리적, 화학적 상태 변화와 활성의 관계를 이해하고자 하였다. 재분산 처리에 따른 촉매 활성 금속의 상태 및 촉매 입자 간 상호작용 등을 보기 위해 X-선 회절분석(XRD), CO-화학흡착(CO-pulse chemisorption), 수소 승온환원(H2-TPR) 분석을 실시하였다. 산소 재분산 처리 조건에 따라 백금의 분산도 및 입자 크기, 촉매의 결정상 및 환원 거동이 달라지는 것을 확인하였다. 촉매를 재분산 처리하였을 시 500 ℃에서 산소 처리한 촉매가 가장 높은 전환율과 활성회복률을 보였다. 500 ℃로 산소 처리한 촉매가 백금의 분산도도 비교적 높게 나타나고, 평균 입자 크기가 작아지는 것을 XRD와 CO-화학흡착 결과로부터 확인하여 백금주석입자가 재분산되는 것을 알 수 있었다. 이러한 산소처리에 의한 재분산으로 인해 촉매활성이 회복된다는 것을 알 수 있었고, 백금보다 백금주석 촉매의 활성회복률이 더 높았다.

Redispersion of Pt-Sn particles in Pt, PtSn catalyst which have been sintered by high temperature hydrogen reduction was investigated using oxygen treatment with various temperatures. The aim of this study was to understand the relationship between the catalytic activity for propane dehydrogenation reaction and the change in the physicochemical properties of the catalyst. X-ray diffraction analysis (XRD), CO pulse chemisorption, and H2 temperature programmed reduction (H2-TPR) were performed to investigate the state of active metal and interactions between particles of redispersed catalyst. It was confirmed that the dispersion and particle size of platinum, the crystal phase of the catalyst, and the reduction behavior were changed according to the oxygen treatment. As for the catalytic activity in propane dehydrogeantion, sintered PtSn catalyst treated with oxygen at 500 ℃ showed best activity and recovery of initial activity. It was confirm that catalyst after oxygen treatment at 500 ℃ showed high dispersion of Pt and decreased particle size as the results of CO pulse chemisorption and XRD of catalyst, and thus the redispersion of PtSn particles in sintered catalyst was occurred. Catalytic activity was recovered due to redispersion using oxygen treatment, and the activity recovery of the PtSn catalyst was higher than that of Pt catalyst.

키워드

과제정보

본 연구는 2019년도 한경대학교 연구년 경비의 지원에 의하여 연구되었음.

참고문헌

  1. Bartholomew, C. H., "Mechanisms of Catalyst Deactivation," Appl. Catal. A:Gen., 212, 17-60(2001). https://doi.org/10.1016/S0926-860X(00)00843-7
  2. Argyle, M. D. and Bartholomew, C. H., "Heterogeneous Catalyst Deactivation and Regeneration: A Review," Catalysts, 5(1), 145-269(2015). https://doi.org/10.3390/catal5010145
  3. Arteaga, G. J., Anderson, J. A. and Rohchester C. H., "Effects of Catalyst Regeneration with and Without Chlorine on Heptane Reforming Reactions over Pt/Al2O3 and Pt-Sn/Al2O3", J. Catal., 187(1), 219-229(1999). https://doi.org/10.1006/jcat.1999.2610
  4. Hung, C. C., Yeh, C. Y., Shih, C. C. and Chang, J. R., "Oxychlorination Redispersion of Pt Catalysts: Surface Species and Ptsupport Interactions Characterized by X-ray Absorption and FTIR Spectroscopy," Catalysts, 9(4), 362-376(2019). https://doi.org/10.3390/catal9040362
  5. Arteaga, G. J., Anderson, J. A., Becker, S. M. and Rohchester, C. H., "Influence of Oxychlorination Treatment on the Surface and Bulk Properties of a Pt-Sn/Al2O3 Catalyst," J. Mol. Catal. A Chem., 145(1), 183-201(1999). https://doi.org/10.1016/S1381-1169(99)00092-8
  6. Fiedorow, R. M. J. and Wanke, S. E., "The Sintering of Supported Metal Catalysts: I. Redispersion of Supported Platinum in Oxygen," J. Catal., 43, 34-42(1976). https://doi.org/10.1016/0021-9517(76)90290-6
  7. Fiedorow, R. M. J., Chahar, B. S. and Wanke, S. E., "The Sintering of Supported Metal Catalysts: II. Comparison of Sintering Rates of Supported Pt, Ir, and Rh Catalysts in Hydrogen and Oxygen," J. Catal., 51, 193-202(1978). https://doi.org/10.1016/0021-9517(78)90293-2
  8. Lee, T. J. and Kim, Y. G., "Redispersion of Supported Platinum Catalysts," J. Catal., 90, 279-291(1984). https://doi.org/10.1016/0021-9517(84)90256-2
  9. Li, X., Pei, C. and Gong, J., "Shale Gas Revolution: Catalytic Conversion of C1-C3 Light Alkanes to Value-added Chemicals," Chem., 7(7), 1755-1801(2021). https://doi.org/10.1016/j.chempr.2021.02.002
  10. Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E. and Weckhuysen, B. M., "Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides," Chem. Rev., 114, 10613-10653(2014). https://doi.org/10.1021/cr5002436
  11. Bhasin, M. M., McCain, J. H., Vora, B. V., Imai, T. and Pujado, P. R., "Dehydrogenation and Oxydehydrogenation of Paraffins to Olefins," Appl. Catal. A:Gen., 221(1), 397-419(2001). https://doi.org/10.1016/S0926-860X(01)00816-X
  12. Arteaga, G. J., Anderson, J. A. and Rohchester C. H., "Effects of Oxidation-reduction and Oxychlorination-reduction Cycles on Pt-Ge/Al2O3 Catalysts," J. Catal., 189(1), 195-208(2000). https://doi.org/10.1006/jcat.1999.2695
  13. Arteaga, G. J., Anderson, J. A. and Rohchester, C. H., "Effects of Oxidation-reduction and Oxychlorination-reduction Cycles on CO Adsorption by Pt-Sn/Al2O3 Catalysts," J. Catal., 184(1), 268-279(1999). https://doi.org/10.1006/jcat.1999.2433
  14. Chong, F. K., Anderson, J. A., Becker, S. M. and Rohchester, C. H., "Effects of Oxidation/reduction and Oxychlorination/reduction Cycles on CO Adsorption by Pt-Re/Al2O3 Catalysts," J. Catal., 190(1), 327-337(2000). https://doi.org/10.1006/jcat.1999.2730
  15. Stagga, S. M., Querinib, C. A., Alvareza, W. E. and Resasco, D. E., "Isobutane Dehydrogenation on Pt-Sn/SiO2 Catalysts: Effect of Preparation Variables and Regeneration Treatments," J. Catal., 168(1), 75-94(1997). https://doi.org/10.1006/jcat.1997.1617
  16. Kim, G. H., Jung, K., Kim, W., Um, B., Shin, C., Oh, K. and Koh, H. L., "Effect of Oxychlorination Treatment on the Regeneration of Pt-Sn/Al2O3 Catalyst for Propane Dehydrogenation," Res. Chem. Intermed., 42, 351-365(2016). https://doi.org/10.1007/s11164-015-2300-2
  17. Choi, Y. S., Oh, K., Jung, K., Kim, W. and Koh, H. L., "Regeneration of Pt-Sn/Al2O3 Catalyst for Hydrogen Production Through Propane Dehydrogenation Using Hydrochloric Acid," Catalysts, 10, 898-914(2020). https://doi.org/10.3390/catal10080898
  18. Tedeeva, M. A., Kustov, A. L., Pribytkov, P. V., Kapusttin, G. I., Leonov, A. V., Tkachenko, O. P., Tursunov, O. B., Evdokimenko, N. D. and Kustov, L. M., "Dehydrogenation of Propane in the Presence of CO2 on GaOx/SiO2 Catalyst: Influence of the Texture Characteristics of the Support," Fuel., 313, 122698-122707(2022). https://doi.org/10.1016/j.fuel.2021.122698
  19. Liu, Y., Zhang, G., Wang, J., Zhu, J., Zhang, X., Miller, J. T., Song, C. and Guo, X., "Promoting Propane Dehydrogenation with CO2 over Ga2O3/SiO2 by Eliminating Ga-hydrides," Chinese J. Catal., 42, 2225-2233(2021). https://doi.org/10.1016/S1872-2067(21)63900-1
  20. Sattler, J. J. H. B., Gonzalez-Jimenez, I. D., Luo, L., Stears, B. A., Malek, A., Barton, D. G., Kilos, B. A., Kaminsky, M. P., Verhoeven, T. W. G. M., Koers, E. J., Baldus, B. M. and Weckhuysen, B. M., "Platinum-promoted Ga/Al2O3 as Highly Active, Selective, and Stable Catalyst for the Dehydrogenation of Propane," Angew. Chem. Int. Ed., 53(35), 9251-9256(2014). https://doi.org/10.1002/anie.201404460
  21. Searles, K., Siddiqi, G., Safonova, O. V. and Coperet, C., "Silicasupported Isolated Gallium Sites as Highly Active, Selective and Stable Propane Dehydrogenation Catalysts", Chem. Sci., 8(4), 2661-2666(2017). https://doi.org/10.1039/c6sc05178b
  22. Liu, G., Zhao, Z., Wu, T., Zeng, L. and Gong, J., "Nature of the Active Sites of VOx/Al2O3 Catalysts for Propane Dehydrogenation," ACS Catal. 6(8), 5207-5214(2016). https://doi.org/10.1021/acscatal.6b00893
  23. Wu, Y., Han, Z., Yam, X., Lang, W. and Guo, Y., "Effective Synthesis of Vanadium-doped Mesoporous Silica Nanospheres by Sol-gel Method for Propane Dehydrogenation Reaction," Micropor. Mesopor. Mat., 330, 111616-111627(2022). https://doi.org/10.1016/j.micromeso.2021.111616
  24. Im, J. H. and Choi, M. K., "Physicochemical Stabilization of Pt Against Sintering for a Dehydrogenation Catalyst with High Activity, Selectivity, and Durability," ACS. Catal., 6, 2819-2826(2016). https://doi.org/10.1021/acscatal.6b00329
  25. https://www.tkisrus.com/assets/pdf/brochures/en/tkis-star-en.pdf
  26. Wang, J., Chang, X., Chen, S., Sun, G., Zhou, X., Vovk, E., Yang, Y., Deng, W., Zhao, Z., Mu, R., Pei, C. and Gong, J., "On the Role of Sn Segregation of Pt-Sn Catalysts for Propane Dehydrogenation," ACS. Catal., 11, 4401-4410(2021). https://doi.org/10.1021/acscatal.1c00639
  27. Anresa, P., Gaune-Escarda, M., Brosa, J. P. and Hayerb, E., "Enthalpy of Formation of the (Pt-Sn) System," J. Alloy. Compd., 280(1-2), 158-167(1998). https://doi.org/10.1016/S0925-8388(98)00682-3
  28. Kuznetsov, V. I., Belyi, A. S., Yurchenko, E. N., Smolikov, M. D., Protasova, M. T., Zatolokina, E. V. and Duplyakin, V. K., "Mossbauer Spectroscopic and Chemical Analysis of the Composition of Sn-containing Components of Pt-Sn/Al2O3(Cl) Reforming Catalyst," J. Catal., 99(1), 159-170(1986). https://doi.org/10.1016/0021-9517(86)90209-5
  29. Srinivasan, R., Angelis, R. J. D. and Davis, B. H., "Structural Studies of Pt-Sn Catalysts on High and Low Surface Area Alumina Supports," Catal. Lett., 4, 303-308(1990). https://doi.org/10.1007/BF00765315
  30. Tasbihi, M., Feyzi, F., Amlashi, M. A., Abdullah, A. Z. and Mohamed, A. R., "Effect of the Addition of Potassium and Lithium in Pt-Sn/Al2O3 Catalysts for the Dehydrogenation of Isobutane," Fuel Process. Technol., 88, 883-889(2007). https://doi.org/10.1016/j.fuproc.2007.04.007
  31. Llorca, J., Delapiscina, P. R., Fierro, J. L., Sales, J. and Homs, N., "Influence of Metallic Precursors on the Preparation of Silica-supported PtSn Alloy-Characterization and Reactivity in the Catalytic Activation of CO2", J. Catal., 156, 139-146(1995). https://doi.org/10.1006/jcat.1995.1239
  32. Srinivasan, R. and Davis, B. H., "The Structure of Platinum-tin Reforming Catalysts," Platin. Met. Rev., 36, 151-163(1992).
  33. Vu, B. K., Song, M. B., Ahn, I. Y., Suh, Y. W., Suh, D. J., Kim, W., Koh, H. L., Choi, Y. G. and Shin, E. W., "Pt-Sn Alloy Phases and Coke Mobility over Pt-Sn/Al2O3 and Pt-Sn/ZnAl2O4 Catalysts for Propane Dehydrogenation," Appl. Catal. A:Gen., 400, 25-33(2011). https://doi.org/10.1016/j.apcata.2011.03.057
  34. Vicerich, M. A., Benitez, V. M., Sanchez, M. A., Especel, C., Epron F. and Pieck, C. L., "Ru-Pt Catalysts Supported on Al2O3 and SiO2-Al2O3 for the Selective Ring Opening of Naphthenes," Can. J. Chem. Eng., 98(3), 749-756(2020). https://doi.org/10.1002/cjce.23656
  35. Kim, S. S., Choi, S. H., Lee, S. M. and Hong, S. C., "Enhanced Catalytic Activity of Pt/Al2O3 on the CH4 SCR," J. Ind. Eng. Chem., 18(1), 272-276(2012). https://doi.org/10.1016/j.jiec.2011.11.041
  36. He, Z., Qian, Q., Zhang, Z., Meng, Q., Zhou, H., Jiang, Z. and Han, B., "Synthesis of Higher Alcohols from CO2 Hydrogenation over a PtRu/Fe2O3 Catalyst Under Supercritical Condition," Phil. Trans. R. Soc. A., 373(2057), 20150006-20150015(2015). https://doi.org/10.1098/rsta.2015.0006
  37. Mazzieri, V. A., Grau, J. M., Yori, J. C., Vera, C.R. and Pieck, C. L., "Influence of Additives on the Pt Metal Activity of Naphtha Reforming Catalysts," Appl. Catal. A:Gen., 354(1-2), 161-168(2009). https://doi.org/10.1016/j.apcata.2008.11.031
  38. Lee, J., Jang, E. J., Oh, D. G., Szanyi, J. and Kwak, K. H., "Morphology and Size of Pt on Al2O3: the Role of Specific Metalsupport Interactions Between Pt and Al2O3", J. Catal., 285, 204-212(2020).
  39. Barias, O. A., Holmen, A. and Blekkan, E. A., "Propane Dehydrogenation over Supported Pt and Pt-Sn Catalysts: Catalyst Preparation, Characterization, and Activity Measurements," J. Catal., 158, 1-12(1996). https://doi.org/10.1006/jcat.1996.0001