DOI QR코드

DOI QR Code

LNG 냉열 기반 해수 담수화 공정의 설계 및 분석

Design and Analysis of Desalination Process using LNG Cold Energy

  • 이상현 (숙명여자대학교 화공생명공학부) ;
  • 박경태 (숙명여자대학교 화공생명공학부)
  • Lee, Sang Hyun (Department of Chemical & Biological Engineering, Sookmyung Women's University) ;
  • Park, Kyungtae (Department of Chemical & Biological Engineering, Sookmyung Women's University)
  • 투고 : 2022.01.19
  • 심사 : 2022.02.09
  • 발행 : 2022.08.01

초록

액화 천연 가스는 도시가스로 공급되기 위해 기화의 과정을 거치는데 이 때 약 800 kJ/kg의 냉열이 발생한다. 현재 이 에너지는 모두 바다로 버려지고 있어 에너지 재순환 관점에서 보면 아주 심각한 에너지 낭비를 초래하고 있다. 본 연구에서는 이 점에 착안하여 버려지는 액화 천연 가스의 냉열을 활용할 수 있는 해수담수공정을 제안하고 이 공정을 최적화하여 고유 전력 소비와 경제성에 대해 분석하였다. 그 결과 제안된 공정의 에너지 소모량은 -5.2 kWh/m3, 담수생산 단가는 0.148 USD/m3으로 계산되어 현재까지 개발된 어떤 공정보다도 우수함을 확인하였다.

Liquefied natural gas undergoes a process of vaporization to be supplied as city gas, which generates about 800 kJ/kg of cold energy. Currently, all of this cold energy is being dumped into the sea, resulting in a very serious energy waste from the point of view of energy recycling. In this study, a seawater desalination process that can utilize the wasted cold energy was proposed, and this process was optimized to analyze the specific power consumption and economic feasibility. As a result, the specific energy consumption of the proposed process was calculated as -5.2kWh/m3, and the production cost of the pure water was 0.148 USD/m3, confirming that it is superior to any other process developed so far.

키워드

과제정보

이 논문은 광운대학교 화학공학과 고재욱 교수님의 정년을 기념하여 투고되었습니다. 그 동안 후학 양성을 위해서 노고를 아끼지 않으신 교수님의 은혜에 감사드립니다.

참고문헌

  1. Ghaffour, N., Missimer, T. M. and Amy, G. L., "Technical Review and Evaluation of the Economics of Water Desalination: Current and Future Challenges for Better Water Supply Sustainability," Desalination, 309, 197-207(2013). https://doi.org/10.1016/j.desal.2012.10.015
  2. Reddy, K. V. and Ghaffour, N., "Overview of the Cost of Desalinated Water and Costing Methodologies," Desalination, 205, 340-353(2007). https://doi.org/10.1016/j.desal.2006.03.558
  3. Sommariva, C., Hogg, H. and Callister, K., "Cost Reduction and Design Lifetime Increase in Thermal Desalination Plants: Thermodynamic and Corrosion Resistance Combined Analysis for Heat Exchange Tubes Material Selection," Desalination, 158, 17-21(2003). https://doi.org/10.1016/S0011-9164(03)00427-2
  4. Al-Sahali, M. and Ettouney, H., "Developments in Thermal Desalination Processes: Design, Energy, and Costing Aspects," Desalination, 214, 227-240(2007). https://doi.org/10.1016/j.desal.2006.08.020
  5. Al-Karaghouli, A. and Kazmerski, L. L., "Energy Consumption and Water Production Cost of Conventional and Renewable-energy-powered Desalination Processes," Renewable and Sustainable Energy Reviews, 24, 343-356(2013). https://doi.org/10.1016/j.rser.2012.12.064
  6. Rostamzadeh, H., Ghiasirad, H., Amidpour, M. and Amidpour, Y., "Performance Enhancement of a Conventional Multi-effect Desalination (MED) System by Heat Pump Cycles," Desalination, 477, 114261(2020). https://doi.org/10.1016/j.desal.2019.114261
  7. Kim, J., Park, K., Yang, D. R. and Hong, S., "A Comprehensive Review of Energy Consumption of Seawater Reverse Osmosis Desalination Plants," Appl. Energy, 254, 113652(2019). https://doi.org/10.1016/j.apenergy.2019.113652
  8. Ligaray, M., Kim, N., Park, S., Park, J.-S., Park, J., Kim, Y. and Cho, K. H., "Energy Projection of the Seawater Battery Desalination System Using the Reverse Osmosis System Analysis Model," Chem. Eng. J., 395, 125082(2020). https://doi.org/10.1016/j.cej.2020.125082
  9. Park, K., Kim, D. Y., Jang, Y. H., Kim, M., Yang, D. R. and Hong, S., "Comprehensive Analysis of a Hybrid FO/crystallization/RO Process for Improving Its Economic Feasibility to Seawater Desalination," Water Res., 171, 115426(2020). https://doi.org/10.1016/j.watres.2019.115426
  10. Moharram, N. A., Bayoumi, S., Hanafy, A. A. and El-Maghlany, W. M., "Hybrid Desalination and Power Generation Plant Utilizing Multi-Stage Flash and Reverse Osmosis Driven by Parabolic Trough Collectors," Case Stud. Therm. Eng., 23, 100807(2021). https://doi.org/10.1016/j.csite.2020.100807
  11. Babu, P., Nambiar, A., He, T., Karimi, I. A., Lee, J. D., Englezos, P. and Linga, P., "A Review of Clathrate Hydrate Based Desalination To Strengthen Energy-Water Nexus," ACS Sustainable Chem. Eng., 6, 8093-8107(2018). https://doi.org/10.1021/acssuschemeng.8b01616
  12. He, T., Nair, S. K., Babu, P., Linga, P. and Karimi, I. A., "A Novel Conceptual Design of Hydrate Based Desalination (HyDesal) Process by Utilizing LNG Cold Energy," Appl. Energy, 222, 13-24(2018). https://doi.org/10.1016/j.apenergy.2018.04.006
  13. Chong, Z. R., He, T., Babu, P., Zheng, J. and Linga, P., "Economic Evaluation of Energy Efficient Hydrate Based Desalination Utilizing Cold Energy from Liquefied Natural Gas (LNG)," Desalination, 463, 69-80(2019). https://doi.org/10.1016/j.desal.2019.04.015
  14. Koo, J., Oh, S.-R., Choi, Y.-U., Jung, J.-H. and Park, K., "Optimization of an Organic Rankine Cycle System for an LNG Powered Ship," Energies, 12, 1933(2019). https://doi.org/10.3390/en12101933
  15. Park, K. and Won, W., "Effects of Varying the Ambient Temperature on the Performance of a Single Mixed Refrigerant Liquefaction Process," Journal of Natural Gas Science and Engineering, 34, 958-968(2016). https://doi.org/10.1016/j.jngse.2016.07.069
  16. Remeljej, C. and Hoadley, A., "An Exergy Analysis of Small-scale Liquefied Natural Gas (LNG) Liquefaction Processes," Energy, 31, 2005-2019(2006). https://doi.org/10.1016/j.energy.2005.09.005
  17. Akbari, N., "Introducing and 3E (energy, exergy, economic) Analysis of An Integrated Transcriptical CO2 Rankine Cycle, Stirling Power Cycle and LNG Regasification Process," Applied Thermal Engineering, 140, 442-454(2018). https://doi.org/10.1016/j.applthermaleng.2018.05.073
  18. Wade, N. M., "Distillation Plant Development and Cost Update," Desalination, 136, 3-12(2001). https://doi.org/10.1016/S0011-9164(01)00159-X
  19. Bhojwani, S., Topolski, K., Mukherjee, R., Sengupta, D. and El-Halwagi, M. M., "Technology Review and Data Analysis for Cost Assessment of Water Treatment Systems," Sci. Total Environ., 651, 2749-2761(2019). https://doi.org/10.1016/j.scitotenv.2018.09.363
  20. Wang, Q., "Investigation of the Reduced Specific Energy Consumption of the RO-PRO Hybrid System Based on Temperature-enhanced Pressure Retarded Osmosis," Journal of Membrane Science, 14, 439-452(2019). https://doi.org/10.1016/j.memsci.2019.03.079
  21. Karagiannis, I. C., and Soldatos, P. G., "Water Desalination Cost Literature: Review and Assessment," Desalination, 223, 448-456(2008). https://doi.org/10.1016/j.desal.2007.02.071