DOI QR코드

DOI QR Code

숯의 수분 흡착성능 연구

A Study on Moisture Adsorption Capacity by Charcoals

  • 김대완 (전주대학교 탄소융합공학과) ;
  • 안기선 (전주대학교 탄소융합공학과) ;
  • 곽이구 (전주대학교 탄소융합공학과) ;
  • 김홍건 (전주대학교 탄소융합공학과) ;
  • 유승곤 (전주대학교 탄소융합공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Kim, Dae Wan (Department of Carbon Convergence Engineering, Jeonju University) ;
  • An, Ki Sun (Department of Carbon Convergence Engineering, Jeonju University) ;
  • Kwak, Lee Ku (Department of Carbon Convergence Engineering, Jeonju University) ;
  • Kim, Hong Gun (Department of Carbon Convergence Engineering, Jeonju University) ;
  • Ryu, Seung Kon (Department of Carbon Convergence Engineering, Jeonju University) ;
  • Lee, Young Seak (Department of Applied chemical Engineering, Chungnam National University)
  • 투고 : 2022.01.10
  • 심사 : 2022.02.09
  • 발행 : 2022.08.01

초록

우리나라 전통 숯가마로부터 제조된 숯의 표면형상과 흡착특성을 분석한 후, 습도와 온도를 조절하면서 이들의 수분 흡착성능을 측정하고 황토, 활성탄소섬유 직포 및 활성탄소섬유 종이의 수분 흡착성능과 비교하였다. 숯은 소수성이므로 45% 이하의 습도에서는 수분을 잘 흡착하지 않지만 습도가 증가하면 흡착성능이 서서히 1차식에 비례하여 증가하였다. 황토 분말도 낮은 습도에서는 숯과 유사했지만 습도가 증가하면 흡착성능이 기하급수적으로 증가하면서 Type V 등온흡착곡선을 보였다. 따라서 조선시대에 기상청 직원들이 숯과 황토의 수분 흡착능력을 일기예보에 적용하였다는 기록을 실험적으로 확인할 수 있었다. 활성탄소섬유 직포와 활성탄소섬유 종이는 수분 흡착능력이 월등하고 신속한 반응을 보이므로 습도측정 센서에 적용할 수 있다고 판단된다. 숯 조각의 등온흡착 및 탈착곡선 측정에서 흡착질인 질소의 탈착이 잘 이루어지지 않아 낮은 압력 이력현상(low-pressure hysteresis)이라는 독특한 Type I과 Type IV의 혼합형태를 보이는데, 이는 질소입자가 흡착시에 숯 세공의 틈새를 비비고 들어가 단단히 끼었다가 탈착시에 빠져나오지 않기 때문이다. 숯을 분말로 분쇄하면 이러한 틈새들이 분쇄되어 비표면적이 증가하고 낮은 상대압력에서 흡착질의 탈착량이 증가되었다.

Surface morphology and adsorption characteristics of charcoals prepared from Korean traditional kiln were analyzed, and their moisture adsorption capacities were examined with respect to humidity and temperature change. Moisture adsorption capacities of red-clay powder, activated carbon fiber fabric (ACF fabric) and activated carbon fiber paper(ACF paper) were also examined to compare with those of charcoals. Moisture adsorption capacity of charcoal was low less than 45% humidity due to its hydrophobic property, but it slowly and linearly increased as increasing the humidity. Moisture adsorption capacity of red-clay powder was similar to charcoal at low level humidity, it increased exponentially as increasing the humidity showing Type V adsorption isotherm. Therefore, the weather forecast annal prepared by employee of weather centre in Joseon Dynasty is experimentally approved. ACF fabric and ACF paper show excellent moisture adsorption capacities, which can be used to humidity measuring sensor. Adsorption isotherm of charcoal slice was peculear showing the mixed Type I and Type IV due to low-pressure hysteresis that was occurred from embedment of nitrogen in crevice of charcoal. The specific surface area of charcoal increased by grinding charcoal slice to powder, resulted in increasing the desorption amount of adsorbent at low relative pressure.

키워드

참고문헌

  1. Cooney, D. O., "Activated Charcoal," Marcel Dekker, New York, 33-34(1980).
  2. Davis, W. N., "Deposition Gold from its Solutions," U. S. Patent 227, 963(1880).
  3. Lee, K. S., "A Study on the Use of Charcoal as a Folk Medicine," Ph.D. Dissertation, Yonsei Univ.(1988).
  4. Heo, J., "Dong-ui Bogam," Hoolryondogam, (Kwanghae 5, 1613), Daeseong Culture Co., "Dong-ui Bogam," (1988).
  5. Joseon Dynasty, "Veritable Record of the Joseon Dynasty," Veritable Record of Sunjo, vol. 199(Sunjo 39, 1606).
  6. Lim, Y. J., "Jeungbo Forest Economy," (Youngjo 42, 1766). Rural Development Administration, "Translation of Old Agriculture Book 6, Jeungbo Forest Economy III," p. 229(2003).
  7. Jeong, D. J. and Dang, S., "Daemyungyeul Jikhae," Hongmoonkwan (Taejo 4, 1395).
  8. Yeum, K. S. and Lee, K. Y., "Temperature and Humidity Changes of Indoor Apartment and House during 4 Seasons in Korea," Proceedings of The Korean public health association, p. 126 (2011).
  9. IUPAC, "Manual of Symbols and Terminology," Appendix 2, Pt. 1, Colloid and Surface Chemistry. Pure Appl. Chem., 31(4), 577-638(1972). https://doi.org/10.1351/pac197231040577
  10. Zsigmondy, A., "uber die Struktur des Gels der Kieselsaure. Theorie der Entwasserung," Anorg. Chem., 71, 356-377(1911). https://doi.org/10.1002/zaac.19110710133
  11. Lippens, B. C. and de Boer, J. H., "Studies on Pore Systems in Catalysts: V. The t-method," J. Catalysis 4, 319-323(1965). https://doi.org/10.1016/0021-9517(65)90307-6
  12. Horvath, G. and Kawazoe, K., "Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon," J. Chem. Eng.(Japan), 16, 470-475(1983). https://doi.org/10.1252/jcej.16.470
  13. Everett, D. H. and Powl, J. C., "Adsorption in Slit-like and Cylindrical Micropores in the Henry's Law Region. A Model for the Microporosity of Carbons," J. Chem. Soc. Faraday Trans. I, 72, 619-636(1976). https://doi.org/10.1039/f19767200619
  14. Langmuir, I., J. Amer. Chem. Soc., 40, 1361(1918). https://doi.org/10.1021/ja02242a004
  15. Brunauer, S., Emmett, P. H. and Teller, E., "Adsorption of Gases in Multimolecular Layers," J. Amer. Chem. Soc., 60(2), 309-319(1938). https://doi.org/10.1021/ja01269a023
  16. Gregg, S. J. and Sing, K. S. W., "Adsorption, Surface Area and Porosity," 2nd ed. Academic Press, London, Chap. 1, p. 1(1982).
  17. Arnell, J. C. and McDermott, H. L., Proceedings of the 2nd International Congress on Surface Activity II, p. 113, Butterworths, London (1957).
  18. Bailey, A., Cadenhead, D. A., Davies, D. H., Everett, D. H. and Miles, A. J., "Low Pressure Hysteresis in the Adsorption of Organic Vapours by Porous Carbons," Trans. Faraday Soc., 67, 231-243(1971). https://doi.org/10.1039/TF9716700231
  19. McEnaney, B., "Low Pressure Hysteresis in the Sorption of Carbon Tetrachloride Vapour on Polymer Carbons," J. Chem. Soc. Faraday Trans. I, 70, 84-94(1974). https://doi.org/10.1039/f19747000084
  20. Deitz,V. R. and Berlin, E., "The Interaction of Krypton and an Exfoliated Graphite at 77.4 K," J. Colloid Interface Sci., 44(1), 57-62(1973). https://doi.org/10.1016/0021-9797(73)90191-4
  21. Pope, M. I. and Gregg, S. J., "Futher Observations on the Specific Surface of Coals," Fuel 39(3), 267-269(1960).
  22. Kim, D. W., Kwac, L. K., Kim, H. G. and Ryu, S. K., "Measuring Electrical Resistances of ACF Sensors by CO2 Adsorption in a Small Chamber," Carbon Lett., 32, 295-304(2022). https://doi.org/10.1007/s42823-021-00306-6
  23. Kiselev. A. V., "Adsorption Properties of Hydrophobic Surfaces," J. Colloid Interface Sci., 28(3-4), 430-442(1968). https://doi.org/10.1016/0021-9797(68)90074-X
  24. Ma, Q. F., Tou, Z. Q., Yong, K. N., Lim, Y. Y., Lin, Y. F., Wang, Y. R., Zhou, M. H., Shi, F. F., Niu, L., Dong, X. Y. and Chan, C. C., "Carbon Nanotube/Polyvinyl Alcohol Coated Thin Core Fiber Sensor for Humidity Measurement," Sensors & Actuators B: Chemical, 257, 800-806(2018). https://doi.org/10.1016/j.snb.2017.10.121
  25. Duan, Z. H., Zhao, Q. N., Wang, S, Yuan, Z., Zhang, Y. J., Li, X, Wu, Y. W., Jiang, Y. D. and Tai, H. L., "Novel Application of Attapulgite on High Performance and Low-Cost Humidity Sensors," Sensors & Actuators B: Chemicals, 305, 127534(2020). https://doi.org/10.1016/j.snb.2019.127534
  26. Lee, K. I. and Yeom, D. W., "Study on the Temperature and Humidity Control Performance of Hwang-toh Finish," J. Korea Ins. Ecol. Archi. Environ., 12(6), 99-106(2012).
  27. Kanamori, Y., Itoh, E. and Moyairi, K., "Improvement of Sensitivity, and Response Speed of Capacitive Type Humidity Sensors using Partially Fluorinated Polyimide Thin Film," Mol Cryst. Liq. Cryst., 427, 325-335(2007).
  28. Tetelin, A., C. Pellet, Leville, C. and Kaous. G. N., "Fast Humidity Sensors for a Medical Microsystem," Sensors & Actuators B: Chemical, 91, 211-218(2003). https://doi.org/10.1016/S0925-4005(03)00090-X
  29. Zhang, D. Z., Zong, X. Q. and Wu, Z. L., "Fabrication of Tin Disulfide/Graphene Oxide Nanoflower on Flexible Substance for Ultra Sensitive Humidity Sensing with Ultra Hysteresis and Good Reversibility," Sensors & Actuators B: Chemical, 287, 398-407(2019). https://doi.org/10.1016/j.snb.2019.01.123
  30. Yuk, J. H., Kim, Y. H. and Lee, D. C., "A Study on the Development of Ceramic Humidity Sensors," Proceedings of STRC meetings on Sensor Technology., 2(1), 35-307(1991).
  31. Jung, K. H., "Percolated Pore Networks of Plasma Activated Multiwall Carbon Nanotube for Fast Response, High Sensitivity Capacitive Humidity Sensors," Master Thesis, Korea University(2013).