Acknowledgement
이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (2021R1F1A1062347). 또한 고려대학교의 지원을 받아 수행된 연구임 (K2122591).
References
- Alawieh M, Wang F, and Li X (2016). Identifying systematic spatial failure patterns through wafer clustering. Volume 2016-July, pages 910-913.
- Chang CW, Chao TM, Horng JT, Lu CF, and Yeh RH (2012). Development pattern recognition model for the classification of circuit probe wafer maps on semiconductors. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(12), 2089-2097. https://doi.org/10.1109/TCPMT.2012.2215327
- Chien CF, Hsu SC, and Chen YJ (2013). A system for online detection and classification of wafer bin map defect patterns for manufacturing intelligence. International Journal of Production Research, 51(8), 2324-2338. https://doi.org/10.1080/00207543.2012.737943
- Hijmans RJ (2021). Raster: geographic data analysis and modeling. R package version 3.5-11.
- Hsu SC and Chien CF (2007). Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing. International Journal of Production Economics, 107(1), 88-103. https://doi.org/10.1016/j.ijpe.2006.05.015
- Huang CJ (2002). Application of neural networks and filtered back projection to wafer defect cluster identification. Proceedings of the 4th International Symposium on Electronic Materials and Packaging, pages 99-105.
- Huang CJ (2007). Clustered defect detection of high quality chips using self-supervised multilayer perceptron. Expert Systems with Applications, 33(4), 996-1003. https://doi.org/10.1016/j.eswa.2006.07.011
- Huang CJ, Wang CC, and Wu CF (2002). Image processing techniques for wafer defect cluster identification. IEEE Design and Test of Computers, 19(2), 44-48. https://doi.org/10.1109/54.990441
- Jeong YS, Kim SJ, and JeongM(2008). Automatic identification of defect patterns in semiconductor wafer maps using spatial correlogram and dynamic time warping. IEEE Transactions on Semiconductor Manufacturing, 21(4), 625-637. https://doi.org/10.1109/TSM.2008.2005375
- Jin C, Na H, Piao M, Pok G, and Ryu K (2019). A novel dbscan-based defect pattern detection and classification framework for wafer bin map. IEEE Transactions on Semiconductor Manufacturing, 32(3), 286-292. https://doi.org/10.1109/tsm.2019.2916835
- Kim B, Jeong YS, Tong S, Chang IK, and Jeong MK (2016). Stepdown spatial randomness test for detecting abnormalities in dram wafers 40 with multiple spatial maps. IEEE Transactions on Semiconductor Manufacturing, 29(1), 57-65. https://doi.org/10.1109/TSM.2015.2486383
- Kim J, Lee Y, and Kim H (2018). Detection and clustering of mixed-type defect patterns in wafer bin maps. IISE Transactions, 50(2), 99-111. https://doi.org/10.1080/24725854.2017.1386337
- Li TS and Huang CL (2009). Defect spatial pattern recognition using a hybrid som-svm approach in semiconductor manufacturing. Expert Systems with Applications, 36(1), 374-385. https://doi.org/10.1016/j.eswa.2007.09.023
- Wang CH (2008). Recognition of semiconductor defect patterns using spatial filtering and spectral clustering. Expert Systems with Applications, 34(3), 1914-1923. https://doi.org/10.1016/j.eswa.2007.02.014
- Wang CH (2009). Separation of composite defect patterns on wafer bin 42 map using support vector clustering. Expert Systems with Applications, 36(2 PART 1), 2554-2561. https://doi.org/10.1016/j.eswa.2008.01.057
- Wang CH, Kuo W, and Bensmail H (2006a). Detection and classification of defect patterns on semiconductor wafers. IIE Transactions (Institute of Industrial Engineers), 38(12), 1059-1068. https://doi.org/10.1080/07408170600733236
- Wang CH, Wang SJ, and Lee WD (2006b). Automatic identification of spatial defect patterns for semiconductor manufacturing. International Journal of Production Research, 44(23), 5169-5185. https://doi.org/10.1080/02772240600610822
- Wu MJ, Jang JSR, and Chen JL (2015). Wafer map failure pattern recognition and similarity ranking for largescale data sets. IEEE Transactions on Semiconductor Manufacturing, 28(1), 1-12. https://doi.org/10.1109/TSM.2014.2364237
- Yu J and Lu X (2016). Wafer map defect detection and recognition using joint local and nonlocal linear discriminant analysis. IEEE Transactions on Semiconductor Manufacturing, 29(1), 33-43. https://doi.org/10.1109/TSM.2015.2497264
- Yuan T, Bae S, and Park, J. (2010). Bayesian spatial defect pattern recognition in semiconductor fabrication using support vector clustering. International Journal of Advanced Manufacturing Technology, 51(5-8), 671-683. https://doi.org/10.1007/s00170-010-2647-x