DOI QR코드

DOI QR Code

Composition of Human Breast Milk Microbiota and Its Role in Children's Health

  • Notarbartolo, Veronica (Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo) ;
  • Giuffre, Mario (Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo) ;
  • Montante, Claudio (Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo) ;
  • Corsello, Giovanni (Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo) ;
  • Carta, Maurizio (Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo)
  • Received : 2021.11.03
  • Accepted : 2022.04.02
  • Published : 2022.05.15

Abstract

Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.

Keywords

References

  1. Lopez Leyva L, Brereton NJB, Koski KG. Emerging frontiers in human milk microbiome research and suggested primers for 16S rRNA gene analysis. Comput Struct Biotechnol J 2020;19:121-33. https://doi.org/10.1016/j.csbj.2020.11.057
  2. Kim SY, Yi DY. Analysis of the human breast milk microbiome and bacterial extracellular vesicles in healthy mothers. Exp Mol Med 2020;52:1288-97. https://doi.org/10.1038/s12276-020-0470-5
  3. Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieers G, Guery B, et al. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol 2020;10:9. https://doi.org/10.3389/fcimb.2020.00009
  4. Hufnagl K, Pali-Scholl I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol 2020;42:75-93. https://doi.org/10.1007/s00281-019-00775-y
  5. Sanchez C, Franco L, Regal P, Lamas A, Cepeda A, Fente C. Breast milk: a source of functional compounds with potential application in nutrition and therapy. Nutrients 2021;13:1026. https://doi.org/10.3390/nu13031026
  6. Oikonomou G, Addis MF, Chassard C, Nader-Macias MEF, Grant I, Delbes C, et al. Milk microbiota: what are we exactly talking about? Front Microbiol 2020;11:60. https://doi.org/10.3389/fmicb.2020.00060
  7. Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol 2019;12:843-50. https://doi.org/10.1038/s41385-019-0160-6
  8. Romano-Keeler J, Zhang J, Sun J. COVID-19 and the neonatal microbiome: will the pandemic cost infants their microbes? Gut Microbes 2021;13:1-7.
  9. Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe 2019;25:324-35.e4. https://doi.org/10.1016/j.chom.2019.01.011
  10. Walker WA, Meng D. Breast milk and microbiota in the premature gut: a method of preventing necrotizing enterocolitis. Nestle Nutr Inst Workshop Ser 2020;94:103-12. https://doi.org/10.1159/000505337
  11. Groer MW, Morgan KH, Louis-Jacques A, Miller EM. A scoping review of research on the human milk microbiome. J Hum Lact 2020;36:628-43. https://doi.org/10.1177/0890334420942768
  12. Togo A, Dufour JC, Lagier JC, Dubourg G, Raoult D, Million M. Repertoire of human breast and milk microbiota: a systematic review. Future Microbiol 2019;14:623-41. https://doi.org/10.2217/fmb-2018-0317
  13. Lyons KE, Ryan CA, Dempsey EM, Ross RP, Stanton C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 2020;12:1039. https://doi.org/10.3390/nu12041039
  14. Moubareck CA. Human milk microbiota and oligosaccharides: a glimpse into benefits, diversity, and correlations. Nutrients 2021;13:1123. https://doi.org/10.3390/nu13041123
  15. Demmelmair H, Jimenez E, Collado MC, Salminen S, McGuire MK. Maternal and perinatal factors associated with the human milk microbiome. Curr Dev Nutr 2020;4:nzaa027. https://doi.org/10.1093/cdn/nzaa027
  16. Selma-Royo M, Calvo Lerma J, Cortes-Macias E, Collado MC. Human milk microbiome: from actual knowledge to future perspective. Semin Perinatol 2021;45:151450. https://doi.org/10.1016/j.semperi.2021.151450
  17. Kordy K, Gaufin T, Mwangi M, Li F, Cerini C, Lee DJ, et al. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS One 2020;15:e0219633. https://doi.org/10.1371/journal.pone.0219633
  18. Rajoka MSR, Mehwish HM, Siddiq M, Haobin Z, Zhu J, Yan L, et al. Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. Lebensm Wiss Technol 2017;84:271-80. https://doi.org/10.1016/j.lwt.2017.05.055
  19. Arboleya S, Ruas-Madiedo P, Margolles A, Solis G, Salminen S, de Los Reyes-Gavilan CG, et al. Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int J Food Microbiol 2011;149:28-36. https://doi.org/10.1016/j.ijfoodmicro.2010.10.036
  20. Solis G, de Los Reyes-Gavilan CG, Fernandez N, Margolles A, Gueimonde M. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 2010;16:307-10. https://doi.org/10.1016/j.anaerobe.2010.02.004
  21. Morniroli D, Consales A, Crippa BL, Vizzari G, Ceroni F, Cerasani J, et al. The antiviral properties of human milk: a multitude of defence tools from mother nature. Nutrients 2021;13:694. https://doi.org/10.3390/nu13020694
  22. Mohandas S, Pannaraj PS. Beyond the bacterial microbiome: virome of human milk and effects on the developing infant. Nestle Nutr Inst Workshop Ser 2020;94:86-93. https://doi.org/10.1159/000504997
  23. Stinson LF, Sindi AS, Cheema ASM, Lai CT, Muhlhausler BS, Wlodek ME, et al. The human milk microbiome: who, what, when, where, why, and how? Nutr Rev 2021;79:529-43. https://doi.org/10.1093/nutrit/nuaa029
  24. Boix-Amoros A, Puente-Sanchez F, du Toit E, Linderborg KM, Zhang Y, Yang B, et al. Mycobiome profiles in breast milk from healthy women depend on mode of delivery, geographic location, and interaction with bacteria. Appl Environ Microbiol 2019;85:e02994-18.
  25. Togo AH, Grine G, Khelaifia S, des Robert C, Brevaut V, Caputo A, et al. Culture of methanogenic archaea from human colostrum and milk. Sci Rep 2019;9:18653. https://doi.org/10.1038/s41598-019-54759-x
  26. Dinleyici M, Perez-Brocal V, Arslanoglu S, Aydemir O, Sevuk Ozumut S, Tekin N, et al. Human milk virome analysis: changing pattern regarding mode of delivery, birth weight, and lactational stage. Nutrients 2021;13:1779. https://doi.org/10.3390/nu13061779
  27. Hermansson H, Kumar H, Collado MC, Salminen S, Isolauri E, Rautava S. Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front Nutr 2019;6:4. https://doi.org/10.3389/fnut.2019.00004
  28. Notarbartolo V, Carta M, Insinga V, Giuffre M. Human milk is not "merely nutritious": how its bioactive role can influence child health. EMBJ 2021;16:21-6.
  29. Zimmermann P, Curtis N. Breast milk microbiota: a review of the factors that influence composition. J Infect 2020;81:17-47. https://doi.org/10.1016/j.jinf.2020.01.023
  30. Macia L, Nanan R, Hosseini-Beheshti E, Grau GE. Host- and microbiota-derived extracellular vesicles, immune function, and disease development. Int J Mol Sci 2019;21:107. https://doi.org/10.3390/ijms21010107
  31. Wang X, Yan X, Zhang L, Cai J, Zhou Y, Liu H, et al. Identification and peptidomic profiling of exosomes in preterm human milk: insights into necrotizing enterocolitis prevention. Mol Nutr Food Res 2019. doi: 10.1002/mnfr.201801247. [Epub ahead of print].
  32. Galley JD, Besner GE. The therapeutic potential of breast milk-derived extracellular vesicles. Nutrients 2020;12:745. https://doi.org/10.3390/nu12030745
  33. Spatz DL, Davanzo R, Muller JA, Powell R, Rigourd V, Yates A, et al. Promoting and protecting human milk and breastfeeding in a COVID-19 world. Front Pediatr 2021;8:633700. https://doi.org/10.3389/fped.2020.633700
  34. WHO. Breastfeeding and COVID-19: scientific brief. Geneva: WHO, 2020.
  35. Bardanzellu F, Puddu M, Fanos V. Breast milk and COVID-19: from conventional data to "omics" technologies to investigate changes occurring in SARS-CoV-2 positive mothers. Int J Environ Res Public Health 2021;18:5668. https://doi.org/10.3390/ijerph18115668
  36. Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 2020;159:944-55.e8.
  37. Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021;70:698-706. https://doi.org/10.1136/gutjnl-2020-323020
  38. Gulati M, Singh SK, Corrie L, Kaur IP, Chandwani L. Delivery routes for faecal microbiota transplants: available, anticipated and aspired. Pharmacol Res 2020;159:104954. https://doi.org/10.1016/j.phrs.2020.104954
  39. Zhao Y, Shang Y, Ren Y, Bie Y, Qiu Y, Yuan Y, et al. Omics study reveals abnormal alterations of breastmilk proteins and metabolites in puerperant women with COVID-19. Signal Transduct Target Ther 2020;5:247. https://doi.org/10.1038/s41392-020-00362-w
  40. Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 2020;182:59-72.e15.
  41. Dogra SK, Dore J, Damak S. Gut microbiota resilience: definition, link to health and strategies for intervention. Front Microbiol 2020;11:572921. https://doi.org/10.3389/fmicb.2020.572921
  42. Nolan LS, Rimer JM, Good M. The role of human milk oligosaccharides and probiotics on the neonatal microbiome and risk of necrotizing enterocolitis: a narrative review. Nutrients 2020;12:3052. https://doi.org/10.3390/nu12103052
  43. Gautier T, David-Le Gall S, Sweidan A, Tamanai-Shacoori Z, Jolivet-Gougeon A, Loreal O, et al. Nextgeneration probiotics and their metabolites in COVID-19. Microorganisms 2021;9:941. https://doi.org/10.3390/microorganisms9050941
  44. Sharma A, Laxman B, Naureckas ET, Hogarth DK, Sperling AI, Solway J, et al. Associations between fungal and bacterial microbiota of airways and asthma endotypes. J Allergy Clin Immunol 2019;144:1214-27.e7.
  45. Yuan X, Chen R, McCormick KL, Zhang Y, Lin X, Yang X. The role of the gut microbiota on the metabolic status of obese children. Microb Cell Fact 2021;20:53. https://doi.org/10.1186/s12934-021-01548-9
  46. Davis JA, Baumgartel K, Morowitz MJ, Giangrasso V, Demirci JR. The role of human milk in decreasing necrotizing enterocolitis through modulation of the infant gut microbiome: a scoping review. J Hum Lact 2020;36:647-56. https://doi.org/10.1177/0890334420950260
  47. Granger CL, Embleton ND, Palmer JM, Lamb CA, Berrington JE, Stewart CJ. Maternal breastmilk, infant gut microbiome and the impact on preterm infant health. Acta Paediatr 2021;110:450-7. https://doi.org/10.1111/apa.15534
  48. Asbury MR, Butcher J, Copeland JK, Unger S, Bando N, Comelli EM, et al. Mothers of preterm infants have individualized breast milk microbiota that changes temporally based on maternal characteristics. Cell Host Microbe 2020;28:669-82.e4.
  49. Carr LE, Virmani MD, Rosa F, Munblit D, Matazel KS, Elolimy AA, et al. Role of human milk bioactives on infants' gut and immune health. Front Immunol 2021;12:604080. https://doi.org/10.3389/fimmu.2021.604080
  50. Buffet-Bataillon S, Bellanger A, Boudry G, Gangneux JP, Yverneau M, Beuchee A, et al. New insights into microbiota modulation-based nutritional interventions for neurodevelopmental outcomes in preterm infants. Front Microbiol 2021;12:676622. https://doi.org/10.3389/fmicb.2021.676622
  51. Gopalakrishna KP, Macadangdang BR, Rogers MB, Tometich JT, Firek BA, Baker R, et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat Med 2019;25:1110-5. https://doi.org/10.1038/s41591-019-0480-9
  52. Walker WA. Summary on microbiota of milk and lactation: influence on gut colonization. Nestle Nutr Inst Workshop Ser 2020;94:113-4. https://doi.org/10.1159/000505552
  53. Alsharairi NA. The infant gut microbiota and risk of asthma: the effect of maternal nutrition during pregnancy and lactation. Microorganisms 2020;8:1119. https://doi.org/10.3390/microorganisms8081119
  54. Ferrante G, Carta M, Montante C, Notarbartolo V, Corsello G, Giuffre M. Current insights on early life nutrition and prevention of allergy. Front Pediatr 2020;8:448. https://doi.org/10.3389/fped.2020.00448
  55. Barcik W, Boutin RCT, Sokolowska M, Finlay BB. The role of lung and gut microbiota in the pathology of asthma. Immunity 2020;52:241-55. https://doi.org/10.1016/j.immuni.2020.01.007
  56. Espirito Santo C, Caseiro C, Martins MJ, Monteiro R, Brandao I. Gut microbiota, in the halfway between nutrition and lung function. Nutrients 2021;13:1716. https://doi.org/10.3390/nu13051716
  57. Ballarini S, Rossi GA, Principi N, Esposito S. Dysbiosis in pediatrics is associated with respiratory infections: is there a place for bacterial-derived products? Microorganisms 2021;9:448. https://doi.org/10.3390/microorganisms9020448
  58. Toivonen L, Hasegawa K, Waris M, Ajami NJ, Petrosino JF, Camargo CA Jr, et al. Early nasal microbiota and acute respiratory infections during the first years of life. Thorax 2019;74:592-9. https://doi.org/10.1136/thoraxjnl-2018-212629
  59. Stinson LF. Establishment of the early-life microbiome: a DOHaD perspective. J Dev Orig Health Dis 2020;11:201-10. https://doi.org/10.1017/s2040174419000588
  60. Barnett DJM, Mommers M, Penders J, Arts ICW, Thijs C. Intestinal archaea inversely associated with childhood asthma. J Allergy Clin Immunol 2019;143:2305-7. https://doi.org/10.1016/j.jaci.2019.02.009
  61. Haddad EN, Sugino KY, Kerver JM, Paneth N, Comstock SS. The infant gut microbiota at 12 months of age is associated with human milk exposure but not with maternal pre-pregnancy body mass index or infant BMI-for-age z-scores. Curr Res Physiol 2021;4:94-102. https://doi.org/10.1016/j.crphys.2021.03.004
  62. Petraroli M, Castellone E, Patianna V, Esposito S. Gut microbiota and obesity in adults and children: the state of the art. Front Pediatr 2021;9:657020. https://doi.org/10.3389/fped.2021.657020
  63. Moszak M, Szulinska M, Bogdanski P. You are what you eat-the relationship between diet, microbiota, and metabolic disorders-a review. Nutrients 2020;12:1096. https://doi.org/10.3390/nu12041096
  64. McBurney MI, Davis C, Fraser CM, Schneeman BO, Huttenhower C, Verbeke K, et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J Nutr 2019;149:1882-95. https://doi.org/10.1093/jn/nxz154
  65. Bai J, Hu Y, Bruner DW. Composition of gut microbiota and its association with body mass index and lifestyle factors in a cohort of 7-18 years old children from the American Gut Project. Pediatr Obes 2019;14:e12480. https://doi.org/10.1111/ijpo.12480
  66. Yu H, Dilbaz S, Cossmann J, Hoang AC, Diedrich V, Herwig A, et al. Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophages. J Clin Invest 2019;129:2485-99. https://doi.org/10.1172/jci125646
  67. Kim KN, Yao Y, Ju SY. Short chain fatty acids and fecal microbiota abundance in humans with obesity: a systematic review and meta-analysis. Nutrients 2019;11:2512. https://doi.org/10.3390/nu11102512
  68. Fernandez L, Pannaraj PS, Rautava S, Rodriguez JM. The microbiota of the human mammary ecosystem. Front Cell Infect Microbiol 2020;10:586667. https://doi.org/10.3389/fcimb.2020.586667
  69. Beghetti I, Biagi E, Martini S, Brigidi P, Corvaglia L, Aceti A. Human milk's hidden gift: implications of the milk microbiome for preterm infants' health. Nutrients 2019;11:2944. https://doi.org/10.3390/nu11122944
  70. van den Akker CHP, van Goudoever JB, Shamir R, Domellof M, Embleton ND, Hojsak I, Lapillonne A, et al. Probiotics and preterm infants: a position paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics. J Pediatr Gastroenterol Nutr 2020;70:664-80. https://doi.org/10.1097/MPG.0000000000002655
  71. Oddi S, Binetti A, Burns P, Cuatrin A, Reinheimer J, Salminen S, et al. Occurrence of bacteria with technological and probiotic potential in Argentinian human breast-milk. Benef Microbes 2020;11:685-702. https://doi.org/10.3920/bm2020.0054
  72. Oddi S, Huber P, Rocha Faria Duque AL, Vinderola G, Sivieri K. Breast-milk derived potential probiotics as strategy for the management of childhood obesity. Food Res Int 2020;137:109673. https://doi.org/10.1016/j.foodres.2020.109673