참고문헌
- Chen F, Long X, Liu Z, Shao H, Liu L. 2014. Analysis of phenolic acids of jerusalem artichoke (Helianthus Tuberosus L.) responding to salt-stress by liquid chromatography/tandem mass spectrometry. Sci. World J. 2014: 568043. https://doi.org/10.1155/2014/568043
- Chen F, Long X, Yu M, Liu Z, Liu L, Shao H. 2013. Phenolics and antifungal activities analysis in industrial crop jerusalem artichoke (Helianthus Tuberosus L.) leaves. Ind. Crops Prod. 47: 339-345. https://doi.org/10.1016/j.indcrop.2013.03.027
- Chen F, Long X, Li E. 2019. Evaluation of antifungal phenolics from Helianthus tuberosus L. leaves against Phytophythora capsici Leonian by chemometric analysis. Molecules 24: 4300. https://doi.org/10.3390/molecules24234300
- Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125: 1401-1412. https://doi.org/10.1093/jn/125.6.1401
- Jung YJ, Kim BO, Kwak JH, Pyo S. 2016. Jerusalem Artichoke (Helianthus tuberosus) on the inflammatory parkcrine loop between macrophage and adipocytes. J. Agric. Food. Chem. 64: 9317-9325. https://doi.org/10.1021/acs.jafc.6b03407
- Wang PC, Zhao S, Yang BY, Wang QH, Kuang HX. 2016. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr. Polym. 148: 86-97. https://doi.org/10.1016/j.carbpol.2016.02.060
- Wang Y, Zhao Y, Xue F, Nan X, Wang H, Hua D, et al. 2020. Nutritional value, bioactivity and application potential of Jerusalem artichoke (Helianthus tuberosus L.) as a neotype feed resource. Anim. Nutr. 6: 429-437. https://doi.org/10.1016/j.aninu.2020.09.001
- Muscogiuri G, Barrea L, Caprio M, Ceriani F, Chavez AO, El Ghoch M, et al. 2021. Nutritional guidelines for the management of insulin resistance. Crit. Rev. Food. Sci. Nutr. 2: 1-14.
- Ritz E. 1999. Nephropathy in type 2 diabetes. J. Inter. Med. 245: 111-126. https://doi.org/10.1046/j.1365-2796.1999.00411.x
- Vinik AI, Park TS, Stansberry KB, Pittenger GL. 2000. Diabetic neuropathies. Diabetologia 43: 957-973. https://doi.org/10.1007/s001250051477
- Kolb H, Mandrup-Poulsen T. 2005. An immune origin of type 2 diabetes? Diabetologia 48: 1038-1050. https://doi.org/10.1007/s00125-005-1764-9
- Koenen M, Hill MA, Cohen P, Sowers JR. 2021. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 128: 951-968. https://doi.org/10.1161/CIRCRESAHA.121.318093
- Maggio CA, Pi-Sunyer FX. 2003. Obesity and type 2 diabetes. Endocrinol. Metab. Clin. North Am. 32: 805-822. https://doi.org/10.1016/S0889-8529(03)00071-9
- Mariana M, Ma L, Freedman BI. 2012. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Rev. 9: 6-22.
- Rask-Madsen C, King GL. 2013. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell. Metab. 1: 20-33. https://doi.org/10.1016/j.cmet.2012.11.012
- Keen H, Clark C, Laakso M. 1999. Reducing the burden of diabetes: Managing cardiovascular disease. Diabetes Metab. Res. Rev. 15: 186-196. https://doi.org/10.1002/(SICI)1520-7560(199905/06)15:3<186::AID-DMRR30>3.0.CO;2-5
- Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M, et al. 2002. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. Diabet. Res. Clin. Pract. 55: 65-85. https://doi.org/10.1016/S0168-8227(01)00365-5
- Manson JE, Colditz GA, Stampfer MJ, Willett WC, Krolewski AS, Rosner B, et al. 1991. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women. Arch. Inter. Med. 151: 1141-1147. https://doi.org/10.1001/archinte.1991.00400060077013
- Pickup JC, Crook MA. 1998. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41: 1241-1248. https://doi.org/10.1007/s001250051058
- Kolb H, Mandrup-Poulsen T. 2005. An immune origin of type 2 diabetes? Diabetologia 48: 1038-1050. https://doi.org/10.1007/s00125-005-1764-9
- Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. 2007. Chronic inflammation : importance of NOD2 and NALP3 in interleukin-1 β generation. Clin. Exp. Immunol. 147: 227-235. https://doi.org/10.1111/j.1365-2249.2006.03261.x
- Choy EH, Panayi GS. 2001. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 344: 907-916. https://doi.org/10.1056/NEJM200103223441207
- Hamza N, Berke B, Cheze C, Agli AN, Robinson P, Gin H, et al. 2010. Prevention of type 2 diabetes induced by high fat diet in the C57BL/6J mouse by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J. Ethnopharmacol. 128: 513-518. https://doi.org/10.1016/j.jep.2010.01.004
- Ibeh BO, Ezeaja MI. 2011. Preliminary study of antidiabetic activity of the methanolic leaf extract of Axonopus compressus (P. Beauv) in alloxan-induced diabetic rats. J. Ethnopharmacol. 3: 713-716. https://doi.org/10.1016/j.jep.2011.10.009
- Ferris FLD. 1993. Diabetic retinopathy. Diabet. Care 16: 322-325. https://doi.org/10.2337/diacare.16.1.322
- Li T, Zhang XD, Song YW, Liu JW. 2005. A microplate-based screening method for α-glucosidase inhibitors. Chin. J. Clin. Pharmacol. Ther 10: 1128-1134. https://doi.org/10.3969/j.issn.1009-2501.2005.10.011
- Estrada DE, Ewart HS, Tsakiridis T, Volchuk A, Ramlal T, Tritschler H, 1996. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: Participation of elements of the insulin signaling pathway. Diabetes 45: 1798-1804. https://doi.org/10.2337/diabetes.45.12.1798
- Yin J, Zuberi A, Gao Z, Liu D, Liu Z, Ye J. 2009. Shilianhua extract inhibits GSK-3 and promotes glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 296: E1275-E1280. https://doi.org/10.1152/ajpendo.00092.2009
- Zhang S, Kim AT, Liu X, Yan L, Kim SM. 2020. Antioxidant and antidiabetic activities of vanadium-binding protein and trifuhalol A. J. Food Biochem. 44: e13540.
- Jeong HJ, Kim JS, Sa YJ, Kim MO, Yang J, Kim M. 2011. Antioxidant activity and α-glucosidase inhibitory effect of Jerusalem Arichoke (Heliantus tuberosus) methanol extracts by heat treatment conditions. Korean J. Med. Corp Sci. 19: 257-263. https://doi.org/10.7783/KJMCS.2011.19.4.257
- Melmer A, Kempf P, Laimer M. 2018. The role of physical exercise in obesity and diabetes. Praxis 107: 971-976. https://doi.org/10.1024/1661-8157/a003065
- Pulgaron ER, Delamater AM. 2014. Obesity and type 2 diabetes in children: epidemiology and treatment. Curr. Diab. Rep. 14: 508. https://doi.org/10.1007/s11892-014-0508-y
- Sawicka B, Skiba D, Pszczolkowski P, Aslan I, Sharifi-Rad J, Krochmal-Marczak B. 2020. Jerusalem artichoke (Helianthus tuberosus L.) as a medicinal plant and its natural products. Cell. Mol. Biol. 66: 160-777. https://doi.org/10.14715/cmb/2020.66.4.20
- Defrono RA, Tripathy D. 2009. Skeletal muscle insulin resistance is the primary defect in type-2 diabetes. Diabet. Care 32: S157-163. https://doi.org/10.2337/dc09-S302
- Cantley LC. 2002. The phosphoinositide 3-kinase pathway. Science 296: 1655-1657. https://doi.org/10.1126/science.296.5573.1655
- Xu P, Xiao J, Chi S. 2021. Piperlongumine attenuates oxidative stress, inflammatory, and apoptosis through modulating the GLUT-2/4 and AKT signaling pathway in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 35: 1-12.
- Postic C, Burcelin R, Rencurel F, Pegorier JP, Loizeau M, Girard J. 1993. Evidence for a transient inhibitory effect of insulin on GLUT2 expression in the liver: studies in vivo and in vitro. Biochem. J. 293: 119-124. https://doi.org/10.1042/bj2930119
- Henriksen EJ, Kinnick TR, Teachey MK, O'Keefe MP, Ring D, Johnson KW, et al. 2003. Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats. Am. J. Physiol. Endocrinol. Metab. 284: E892-E900. https://doi.org/10.1152/ajpendo.00346.2002
- Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. 2000. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 406: 86-90. https://doi.org/10.1038/35017574
- Ilouz R, Kowalsman N, Eisenstein M, Eldar-Finkelman H. 2006. Identification of novel glycogen synthase kinase-3β substrate-interacting residues suggests a common mechanism for substrate recognition. J. Biol. Chem. 281: 30621-30630. https://doi.org/10.1074/jbc.M604633200
- Chen ZJ, Zhao XS, Fan TP, Qi HX, Li D. 2020. Glycine improves ischemic stroke through miR-19a-3p/AMPK/GSK-3β/HO-1 pathway. Drug Des. Dev. Ther. 14: 2021-2031. https://doi.org/10.2147/DDDT.S248104
- Cross DA, Alessi DR, Vandenheede JR, McDowell HE, Hundal HS. Cohen P. 1994. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem. J. 303: 21-26. https://doi.org/10.1042/bj3030021
- Martin M, Rehani K, Jope RS, Michalek SM. 2005. Toll-like receptor mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6: 777-784. https://doi.org/10.1038/ni1221
- Shoelson SE, Lee JS, Goldfine AB. 2006. Inflammation and insulin resistance. J. Clin. Investig. 116: 1793-1801. https://doi.org/10.1172/JCI29069
- Gautam S, Pal S, Maurya R, Srivastava AK. 2015. Ethanolic extract of Allium cepa stimulates glucose transporter typ 4-mediated glucose uptake by the activation of insulin signaling. Planta Med. 81: 208-214. https://doi.org/10.1055/s-0034-1396201
- Motloung DM, Mashele SS, Matowane GR, Swain SS, Bonnet SL, Noreljaleel AEM, et al. 2020. Synthesis, characterization, antidiabetic and antioxidative evaluation of a novel Zn(II)-gallic acid complex with multi-facet activity. J. Pharm. Pharmacol. 72: 1412-1426. https://doi.org/10.1111/jphp.13322
- Noipha K, Ratanachaiyavong S, Ninla-Aesong P. 2010. Enhancement of glucose transport by selected plant foods in muscle cell line L6. Diabetes Res. Clin. Pract. 89: 22-26. https://doi.org/10.1016/j.diabres.2010.03.017