과제정보
본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다. (No. NRF-2020R1A2C1100741).
참고문헌
- Ajayakumar, K. (2021). Classification of the Level of Geometry of Building Elements using Deep-learning, https://www.cms.bgu.tum.de/en/theses/completedtheses (Dec. 15.2021)
- Bienvenido-Huertas, D., Nieto-Julian, J.E., Moyano, J.J., Macias-Bernal, J.M., Castro, J. (2019). Implementing Artificial Intelligence in H-BIM Using the J48 Algorithm to Manage Historic Buildings. International Journal of Architectural Heritage, 14, pp. 1148-1160. https://doi.org/10.1080/15583058.2019.1589602
- Bloch, T., Sacks, R. (2018). Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models, Automation in Construction, 91, pp. 256-272. https://doi.org/10.1016/j.autcon.2018.03.018
- Cursi, S., Simeone, D., Coraglia, U. M. (2017). An ontology-based platform for BIM semantic enrichment. Proceedings of the 35th eCAADe Conference, 2, pp. 649-656.
- Dietterich, T. G. (2002). Ensemble learning. The handbook of brain theory and neural networks, 2(1), pp. 110-125.
- Eastman, C., Lee, J. M., Jeong, Y. S., Lee, J. K. (2009). Automatic rule-based checking of building designs. Automation in Construction, 18(8), 1011-1033. https://doi.org/10.1016/j.autcon.2009.07.002
- Eastman, C. M., Jeong, Y. S., Sacks, R., Kaner, I. (2010). Exchange model and exchange object concepts for implementation of national BIM standards, Journal of computing in civil engineering, 24(1), pp. 25-34. https://doi.org/10.1061/(ASCE)0887-3801(2010)24:1(25)
- Eom, H. N., Kim, J. S., Choi, S. O. (2020). Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model, Journal of Intelligence and Information Systems, 26(2), pp. 105-129. https://doi.org/10.13088/JIIS.2020.26.2.105
- Hwang, J. R., Kang, T. W., Hong, C. H. (2012). A Study on The Correlation Analysis Between IFC and CityGML for Efficient Utilization of Construction Data and GIS Data, Journal of Korea Spatial Information Society, 20(5), pp. 49-56. https://doi.org/10.12672/ksis.2012.20.5.049
- Jung, R. K., Koo, B. S., Yu, Y. S. (2019). Using Deep Learning for Automated Classification of Wall Subtypes for Semantic Integrity Checking of Building Information Models, Journal of KBIM, 9(4), pp. 31-40.
- Khemlani, L. (2004). The IFC Building Model: A Look Under the Hood, AECbytes, https://www.aecbytes.com/feature/2004/IFC.html (Nov, 16, 2021)
- Kim, I. H., Yoo, H. J., Choi, J. S. (2012). A Study on the Interoperability Improvement of IFC Property Information for Energy Performance Assessment in the Early Design Phase, Transactions of the Society of CAD/CAM Engineers, 27(6), pp. 456-465.
- Koo, B. S., Fischer, M. (2000). Feasibility study of 4D CAD in commercial construction, Journal of construction engineering and management, 126(4), pp. 251-260. https://doi.org/10.1061/(ASCE)0733-9364(2000)126:4(251)
- Koo, B. S., Yu, Y. S., Jung, R. K. (2018). Machine Learning Based Approach to Building Element Classification for Semantic Integrity Checking of Building Information Models, Korean Journal of Computational Design and Engineering, 23(4), pp.373-383. https://doi.org/10.7315/cde.2018.373
- Koo, B., Jung, R., Yu, Y. (2021). Automatic classification of wall and door BIM element subtypes using 3D geometric deep neural networks. Advanced Engineering Informatics, 47, 101200. https://doi.org/10.1016/j.aei.2020.101200
- Krijnen, T. (2015). IfcOpenShell, https://ifcopenshell.org (Oct. 15. 2021)
- Lee, J. Y., Seo, M. R., Son, B. S. (2009). A Study on the Exchange Method of Building Information Model between BIM Solutions using IFC File Format, Journal of the Architectural Institute of Korea Planning and Design, 25(3), pp. 29-38.
- Lee, J., Park, J., Yoon, H. (2020). Automatic Classification of Bridge Component based on Deep Learning. Journal of the Korean Society of Civil Engineers, 40(2), pp. 239-245. https://doi.org/10.12652/Ksce.2020.40.2.0239
- Ma, L., Sacks, R., Kattell, U. (2017). Building model object classification for semantic enrichment using geometric features and pairwise spatial relations, Proceedings of the Joint Conference on Computing in Construction, 1, pp. 373-380.
- Maturana, D., Scherer, S. (2015). Voxnet: A 3d convolutional neural network for real-time object recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 922-928). IEEE.
- Park, J. D., Jeong, Y. W. (2010). A Study on the Ontology-Based Representation Model for Interoperability of BIM(Building Information Model), Journal of the Architectural Institute of Korea Planning and Design, 26(8), pp. 21-28.
- Polikar, R. (2006). Ensemble based systems in decision making, IEEE Circuits and systems magazine, 6(3), pp. 21-45. https://doi.org/10.1109/MCAS.2006.1688199
- Qi, C. R., Su, H., Mo, K., Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652-660.
- Ramos, J. (2003). Using tf-idf to determine word relevance in document queries, In Proceedings of the first instructional conference on machine learning, 242(1), pp. 29-48.
- Rokach, L. (2010). Ensemble-based classifiers. Artificial intelligence review, 33(1), pp. 1-39. https://doi.org/10.1007/s10462-009-9124-7
- Shen, J. (2020). A Simulated Point Cloud Implementation of a Machine Learning Segmentation and Classification Algorithm (Doctoral dissertation, Purdue University Graduate School).
- Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E. (2015). Multi-view convolutional neural networks for 3d shaperecognition, Proceedings of the IEEE internationalconference on computer vision, pp. 945-953.
- Wang, C., Cho, Y. K., Kim, C. (2015). Automatic BIM component extraction from point clouds of existing buildings for sustainability applications. Automation in Construction, 56, 1-13. https://doi.org/10.1016/j.autcon.2015.04.001
- Xu, N., Luo, J., Wu, T., Dong, W., Liu, W., Zhou, N. (2021). Identification and portrait of urban functional zones based on multisource heterogeneous data and ensemble learning, Remote Sensing, 13(3), 373. https://doi.org/10.3390/rs13030373
- Yu, Y. S., Lee, K. E., Koo, B. S., Lee, K. H. (2021). Modeling Element Relations as Structured Graphs Via Neural Structured Learning to Improve BIM Element Classification, Journal of Civil and Environmental Engineering Research, 41(3), pp. 227-288.