Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022M3I7A4085485).
References
- IEEE Electronics Packaging Society, "Heterogeneous Integration Roadmap 2021 Edition", IEEE, (2022) from https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2021-edition.html
- J. H. Pang, D. Chong, and T. Low, "Thermal cycling analysis of flip-chip solder joint reliability", IEEE Trans. Compon. Packag. Technol., vol. 24, no. 4, pp. 705-712, (2001). https://doi.org/10.1109/6144.974964
- L. J. Ladani, "Numerical analysis of thermo-mechanical reliability of through silicon vias (TSVs) and solder interconnects in 3-dimensional integrated circuits", Microelectron. Eng., vol. 87, no. 2, pp. 208-215, (2010). https://doi.org/10.1016/j.mee.2009.07.022
- M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, "CCD-based thermoreflectance microscopy: principles and applications", J. Phys. D: Appl. Phys., vol. 42, no. 14, p. 143001, (2009). https://doi.org/10.1088/0022-3727/42/14/143001
- Y. Zhang, W. Zhu, F. Hui, M. Lanza, T. Borca-Tasciuc, and M. Munoz Rojo, "A review on principles and applications of scanning thermal microscopy (SThM)", Adv. Funct. Mater., vol. 30, no. 18, p. 1900892, (2020). https://doi.org/10.1002/adfm.201900892
- B. Hussain, B. Jalil, M. A. Pascali, M. Imran, G. Serafino, D. Moroni, and P. Ghelfi, "Thermal vulnerability detection in integrated electronic and photonic circuits using infrared thermography", Appl. Opt., vol. 59, no. 17, pp. E97-E106, (2020). https://doi.org/10.1364/ao.389960
- D. Kendig, K. Yazawa, A. Marconnet, M. Asheghi, and A. Shakouri, "Side-by-side comparison between infrared and thermoreflectance imaging using a thermal test chip with embedded diode temperature sensors", in 2012 28th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2012: IEEE, pp. 344-347, (2012).
- T. Miyazaki and S. Adachi, 'Analysis of spectroscopic-ellipsometry and thermoreflectance spectra of Si", J. Appl. Phys., vol. 77, no. 4, pp. 1741-1746, (1995). https://doi.org/10.1063/1.358867
- E. Matatagui, A. Thompson, and M. Cardona, "Thermoreflectance in semiconductors", Phys. Rev., vol. 176, no. 3, p. 950, (1968). https://doi.org/10.1103/PhysRev.176.950
- K. Maize and A. Shakouri, "Transient thermal imaging using thermoreflectance", in 2008 24th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2008: IEEE, pp. 55-58, (2008).
- D. U. Kim, C. B. Jeong, J. D. Kim, K. S. Lee, H. Hur, K. H. Nam, G. H. Kim, and K. S. Chang, "Laser scanning confocal thermoreflectance microscope for the backside thermal imaging of microelectronic devices", Sens., vol. 17, no. 12, p. 2774, (2017). https://doi.org/10.3390/s17122774
- J. A. Summers, T. Yang, M. T. Tuominen, and J. A. Hudgings, "High contrast, depth-resolved thermoreflectance imaging using a Nipkow disk confocal microscope", Rev. Sci. Instrum., vol. 81, no. 1, p. 014902, (2010). https://doi.org/10.1063/1.3276700
- J. Christofferson and A. Shakouri, "Thermoreflectance based thermal microscope", Rev. Sci. Instrum., vol. 76, no. 2, p. 024903, (2005). https://doi.org/10.1063/1.1850632
- S. Grauby, A. Salhi, J.-M. Rampnoux, H. Michel, W. Claeys, and S. Dilhaire, "Laser scanning thermoreflectance imaging system using galvanometric mirrors for temperature measurements of microelectronic devices", Rev. Sci. Instrum., vol. 78, no. 7, p. 074902, (2007). https://doi.org/10.1063/1.2757473
- P. E. Raad, P. L. Komarov, and M. G. Burzo, "Non-contact surface temperature measurements coupled with ultrafast real-time computation", in 2007 23rd Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2007: IEEE, pp. 57-63, (2007).
- D. Pierscinska, K. Pierscinski, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, "CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers", Semicond. Sci. Technol., vol. 31, no. 11, p. 115006, (2016). https://doi.org/10.1088/0268-1242/31/11/115006
- E. Koskelo, A. Radunskaya, and J. Hudgings, "Using noise to stochastically enhance the resolution of charge coupled device based thermoreflectance imaging", J. Appl. Phys., vol. 128, no. 10, p. 104502, (2020). https://doi.org/10.1063/5.0017231
- S. Grauby, B. Forget, S. Hole, and D. Fournier, "High resolution photothermal imaging of high frequency phenomena using a visible charge coupled device camera associated with a multichannel lock-in scheme", Rev. Sci. Instrum., vol. 70, no. 9, pp. 3603-3608, (1999). https://doi.org/10.1063/1.1149966
- B. Vermeersch, J. Christofferson, K. Maize, A. Shakouri, and G. De Mey, "Time and frequency domain CCD-based thermoreflectance techniques for high-resolution transient thermal imaging", in 2010 26th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2010: IEEE, pp. 228-234, (2010).
- K. Allison, M. Hallman, E. Koskelo, J. Hardin, A. Radunskaya, and J. Hudgings, "Increasing the speed of frequency-domain, homodyne thermoreflectance imaging", Rev. Sci. Instrum., vol. 91, no. 4, p. 044901, (2020). https://doi.org/10.1063/1.5135922
- W. J. Choi, S. Y. Ryu, J. K. Kim, D. U. Kim, G. H. Kim, and K. S. Chang, "High-speed thermoreflectance microscopy using charge-coupled device-based Fourier-domain filtering", Opt. Lett., vol. 38, no. 18, pp. 3581-3584, (2013). https://doi.org/10.1364/OL.38.003581
- P. M. Mayer, D. Luerssen, R. J. Ram, and J. A. Hudgings, "Theoretical and experimental investigation of the thermal resolution and dynamic range of CCD-based thermoreflectance imaging", J. Opt. Soc. Am. A, vol. 24, no. 4, pp. 1156-1163, (2007). https://doi.org/10.1364/JOSAA.24.001156
- L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, "Stochastic resonance", Rev. Mod. Phys., vol. 70, no. 1, p. 223, (1998). https://doi.org/10.1103/RevModPhys.70.223
- D. Luerssen, J. A. Hudgings, P. M. Mayer, and R. J. Ram, "Nanoscale thermoreflectance with 10mK temperature resolution using stochastic resonance", in 2005 21st Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2005: IEEE, pp. 253-258, (2005).
- M. G. Burzo, P. L. Komarov, and P. E. Raad, "Noncontact transient temperature mapping of active electronic devices using the thermoreflectance method", IEEE Trans. Compon. Packag. Technol., vol. 28, no. 4, pp. 637-643, (2005). https://doi.org/10.1109/TCAPT.2005.859738
- D. Wang, Z. Liu, L. Zheng, and W. Liu, "A high-resolution thermoreflectance imaging technique based on visible light", in 2019 20th Int. Conf. Electron. Packag. Technol., 2019: IEEE, pp. 1-5, (2019).
- S. Sandell, E. Chavez-Angel, A. El Sachat, J. He, C. M. Sotomayor Torres, and J. Maire, "Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures", J. Appl. Phys., vol. 128, no. 13, p. 131101, (2020). https://doi.org/10.1063/5.0020239
- A. Ziabari, P. Torres, B. Vermeersh, Y. Xuan, X. Cartoixa, A. Torello, J. H. Bahk, Y. R. Koh, M. Parsa, P. D. Ye, F. X. Alvarez, and A. Shakouri, "Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices", Nat. Commun., vol. 9, no. 1, pp. 1-7, (2018). https://doi.org/10.1038/s41467-017-02088-w
- G. Tessier, S. Hole, and D. Fournier, "Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths", Appl. Phys. Lett., vol. 78, no. 16, pp. 2267-2269, (2001). https://doi.org/10.1063/1.1363696
- D. U. Kim, K. S. Park, C. B. Jeong, G. H. Kim, and K. S. Chang, "Quantitative temperature measurement of multi-layered semiconductor devices using spectroscopic thermoreflectance microscopy", Opt. Express, vol. 24, no. 13, pp. 13906- 13916, (2016). https://doi.org/10.1364/OE.24.013906
- G. Tessier, M. L. Polignano, S. Pavageau, C. Filloy, D. Fournier, F. Cerutti, and I. Mica, "Thermoreflectance temperature imaging of integrated circuits: calibration technique and quantitative comparison with integrated sensors and simulations", J. Phys. D: Appl. Phys., vol. 39, no. 19, p. 4159, (2006). https://doi.org/10.1088/0022-3727/39/19/007
- J.-H. Bahk and A. Shakouri, "Ultra-fast thermoreflectance imaging for electronic, optoelectronic, and thermal devices", in 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS), 2019: IEEE, pp. 1-7, (2019).
- D. Kendig, G. Pavlidis, S. Graham, J. Reiter, M. Gurr, D. Altman, S. Huerster, and A. Shakouri, "UV thermal imaging of RF GaN devices with GaN resistor validation", in 2018 91st ARFTG Microwave Measurement Conference (ARFTG), 2018: IEEE, pp. 1-4, (2018).
- A. Ziabari, J. H. Bahk, Y. Xuan, P. D. Ye, D. Kendig, K. Yazawa, P. G. Burke, H. Lu, A. C. Gossard, and A. Shakouri, "Sub-diffraction limit thermal imaging for HEMT devices", in 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), 2015: IEEE, pp. 82-87, (2015).
- C. Matei, P. Aaen, and D. Kending, "High-resolution thermoreflectance imaging of GaN power microwave transistors. invited paper", in ARMMS RF & Microwave Society, 2017: University of Surrey, (2017).
- K. Maize, G. Pavlidis, E. Heller, L. Yates, D. Kendig, S. Graham, and A. Shakouri, "High resolution thermal characterization and simulation of power AlGaN/GaN HEMTs using micro-Raman thermography and 800 picosecond transient thermoreflectance imaging", in 2014 IEEE Compd. Semicond. Integr. Circuit Symp., 2014: IEEE, pp. 1-8, (2014).
- F. F. Oettinger, D. L. Blackburn, and S. Rubin, "Thermal characterization of power transistors", IEEE Trans. Electron Devices, vol. 23, no. 8, pp. 831-838, (1976). https://doi.org/10.1109/T-ED.1976.18495
- P. Spirito, G. Breglio, V. d'Alessandro, and N. Rinaldi, 'Thermal instabilities in high current power MOS devices: experimental evidence, electro-thermal simulations and analytical modeling", in 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No. 02TH8595), 2002, vol. 1: IEEE, pp. 23-30, (2002).
- K. Maize, A. Ziabari, W. D. French, P. Lindorfer, B. OConnell, and A. Shakouri, "Thermoreflectance CCD imaging of self-heating in power MOSFET arrays", IEEE Trans. Electron Devices, vol. 61, no. 9, pp. 3047-3053, (2014). https://doi.org/10.1109/TED.2014.2332466
- D. Shvydka, J. Rakotoniaina, and O. Breitenstein, "Lock-in thermography and nonuniformity modeling of thin-film CdTe solar cells", Appl. Phys. Lett., vol. 84, no. 5, pp. 729-731, (2004). https://doi.org/10.1063/1.1645322
- D. Kendig, J. Christofferson, G. B. Alers, and A. Shakouri, "Application of thermoreflectance imaging to identify defects in photovoltaic solar cells", in 2010 26th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2010: IEEE, pp. 245- 248, (2010).
- S. Lal, S. E. Clare, and N. J. Halas, "Nanoshell-enabled photothermal cancer therapy: impending clinical impact", Acc. Chem. Res., vol. 41, no. 12, pp. 1842-1851, (2008). https://doi.org/10.1021/ar800150g
- H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices", Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp. 1-11, (2011).
- D. Wang, Y. R. Koh, Z. A. Kudyshev, K. Maize, A. V. Kildishev, A. Boltasseva, V. M. Shalaev, and A. Shakouri, "Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance", Nano Lett., vol. 19, no. 6, pp. 3796-3803, (2019). https://doi.org/10.1021/acs.nanolett.9b00940