DOI QR코드

DOI QR Code

Effect of Steady-State Oxidation on Tensile Failure of Zircaloy Cladding

  • Received : 2022.03.28
  • Accepted : 2022.06.17
  • Published : 2022.06.30

Abstract

The effect of oxidation time on the characteristics and mechanical properties of spent nuclear fuel cladding was investigated using Raman spectroscopy, tube rupture test, and tensile test. As oxidation time increased, the Raman peak associated with the tetragonal zirconium oxide phase diminished and merged with the Raman peak associated with the monoclinic zirconium oxide phase near 333 cm-1. Additionally, the other tetragonal zirconium oxide phase peak at 380 cm-1 decreased after 100 d of oxidation, whereas the zirconium monoclinic oxide peak became the dominant peak. The oxidation time had no effect on the tube rupture pressure of the oxidized zirconium alloy tube. However, the yield and tensile stresses of the oxidized nuclear fuel cladding tube decreased after 100 d of oxidation. The results of the scanning electron microscopy and transmission electron microscopy were represented with the in-situ Raman analysis result for the oxide characteristics generated on the cladding of spent nuclear fuel.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2106022), and the KAERI Institutional Project (Project No. 522320-22).

References

  1. W. Qin, C. Nam, H.L. Li, J.A. Szpunar, "Tetragonal Phase Stability in ZrO2 Film Formed on Zirconium Alloys and its Effects on Corrosion Resistance", Acta Mater., 55(5), 1695-1701 (2007). https://doi.org/10.1016/j.actamat.2006.10.030
  2. E. Polatidis, P. Frankel, J. Wei, M. Klaus, R.J. Comstock, A. Ambard, S. Lyon, R.A. Cottis, and M. Preuss, "Residual Stresses and Tetragonal Phase Fraction Characterisation of Corrosion Tested Zircaloy-4 Using Energy Dispersive Synchrotron X-ray Diffraction", J. Nucl. Mater., 432(1-3), 102-112 (2013). https://doi.org/10.1016/j.jnucmat.2012.07.025
  3. P. Platt, S. Wedge, P. Frankel, M. Gass, R. Howells, and M. Preuss, "A Study Into the Impact of Interface Roughness Development on Mechanical Degradation of Oxides Formed on Zirconium Alloys", J. Nucl. Mater., 459, 166-174 (2015). https://doi.org/10.1016/j.jnucmat.2015.01.028
  4. B. de Gabory, A.T. Motta, and K. Wang, "Transmission Electron Microscopy Characterization of Zircaloy-4 and ZIRLOTM Oxide Layers", J. Nucl. Mater., 456, 272-280 (2015). https://doi.org/10.1016/j.jnucmat.2014.09.073
  5. X. He, H. Yu, G. Jiang, G. Dang, D. Wu, and Y. Zhang, "Cladding Oxidation Model Development Based on Diffusion Equations and a Simulation of the Monoclinic- Tetragonal Phase Transformation of Zirconia During Transient Oxidation", J. Nucl. Mater., 451(1-3), 55-65 (2014). https://doi.org/10.1016/j.jnucmat.2014.03.035
  6. A. Couet, A.T. Motta, and R.J. Comstock, "Hydrogen Pickup Measurements in Zirconium Alloys: Relation to Oxidation Kinetics", J. Nucl. Mater., 451(1-3), 1-13 (2014). https://doi.org/10.1016/j.jnucmat.2014.03.001
  7. N. Ni, D. Hudson, J. Wei, P. Wang, S. Lozano-Perez, G.D.W. Smith, J.M. Sykes, S.S. Yardley, K.L. Moore, S. Lyon, R. Cottis, M. Preuss, and C.R.M. Grovenor, "How the Crystallography and Nanoscale Chemistry of the Metal/oxide Interface Develops During the Aqueous Oxidation of Zirconium Cladding Alloys", Acta Mater., 60(20), 7132-7149 (2012). https://doi.org/10.1016/j.actamat.2012.09.021
  8. H.X. Zhang, D. Fruchart, E.K. Hlil, L. Ortega, Z.K. Li, J.J. Zhang, J. Sun, and L. Zhou, "Crystal Structure, Corrosion Kinetics of New Zirconium Alloys and Residual Stress Analysis of Oxide Films", J. Nucl. Mater., 396(1), 65-70 (2010). https://doi.org/10.1016/j.jnucmat.2009.10.055
  9. A. Yilmazbayhan, A.T. Motta, R.J. Comstock, G.P. Sabol, B. Lai, and Z. Cai, "Structure of Zirconium Alloy Oxides Formed in Pure Water Studied With Synchrotron Radiation and Optical Microscopy: Relation to Corrosion Rate", J. Nucl. Mater., 324(1), 6-22 (2004). https://doi.org/10.1016/j.jnucmat.2003.08.038
  10. A. Yilmazbayhan, E. Breval, A.T. Motta, and R.J. Comstock, "Transmission Electron Microscopy Examination of Oxide Layers Formed on Zr Alloys", J. Nucl. Mater., 349(3), 265-281 (2006). https://doi.org/10.1016/j.jnucmat.2005.10.012
  11. B. Cox, "Some Thoughts on the Mechanisms of In-reactor Corrosion of Zirconium Alloys", J. Nucl. Mater., 336(2-3), 331-368 (2005). https://doi.org/10.1016/j.jnucmat.2004.09.029
  12. P. Bouvier, J. Godlewski, G. and Lucazeau, "A Raman Study of the Nanocrystallite Size Effect on the Pressure- Temperature Phase Diagram of Zirconia Grown by Zirconium-based Alloys Oxidation", J. Nucl. Mater., 300(2-3), 118-126 (2002). https://doi.org/10.1016/S0022-3115(01)00756-5
  13. M. Oskarsson, E. Ahlberg, and K. Pettersson, "Oxidation of Zircaloy-2 and Zircaloy-4 in Water and Lithiated Water at 360℃", J. Nucl. Mater., 295(1), 97-108 (2001). https://doi.org/10.1016/S0022-3115(01)00480-9
  14. S. Gou, B. Zhou, C. Chen, M. Yao, J. Peng, X. Liang, J. Zhang, and Q. Li, "Investigation of Oxide Layers Formed on Zircaloy-4 Coarse-grained Specimens Corroded at 360℃ in Lithiated Aqueous Solution", Corros. Sci., 92, 237-244 (2015). https://doi.org/10.1016/j.corsci.2014.12.012
  15. J.E. Maslar, W.S. Hurst, W.J. Bowers, and J.H. Hendricks, "In Situ Raman Spectroscopic Investigation of Zirconium-Niobium Alloy Corrosion Under Hydrothermal Conditions", J. Nucl. Mater., 298(3), 239-247 (2001). https://doi.org/10.1016/S0022-3115(01)00657-2
  16. T. Kim, J. Kim, K.J. Choi, S.C. Yoo, S. Kim, and J.H. Kim, "Phase Transformation of Oxide Film in Zirconium Alloy in High Temperature Hydrogenated Water", Corros. Sci., 99, 134-144 (2015). https://doi.org/10.1016/j.corsci.2015.06.034
  17. V.Y. Gertsman, Y.P. Lin, A.P. Zhily, and J.A. Szpunar, "Special Grain Boundaries in Zirconia Corrosion Films", Philos. Mag. A, 79(7), 1567-1590 (1999). https://doi.org/10.1080/014186199251904
  18. J. Lin, H. Li, C. Nam, and J.A. Szpunar, "Analysis on Volume Fraction and Crystal Orientation Relationship of Monoclinic and Tetragonal Oxide Grown on Zr- 2.5Nb Alloy", J. Nucl. Mater., 334(2-3), 200-206 (2004). https://doi.org/10.1016/j.jnucmat.2004.06.003
  19. Y. Ding and D.O. Northwood, "TEM Study of the Oxide-Metal Interface Formed During Corrosion of Zr- 2.5wt.%Nb Pressure Tubing", Mater. Charact., 30(1), 13-22 (1993). https://doi.org/10.1016/1044-5803(93)90004-F
  20. H. Anada and K. Takeda, "Microstructure of Oxides on Zirclaloy-4, 1.0Nb Zircaloy-4, and Zircaloy-2 Formed in 10.3- MPa Steam at 673 K", in: Zirconium in the Nuclear Industry: Eleventh International Symposium, E.R. Bradley, G.P Sabol, eds., 35-54, STP 1295, ASTM International, Pennsylvania (1996).
  21. H.S. Hong, S.J. Kim, and K.S. Lee, "Long-term Oxidation Characteristics of Oxygen-added Modified Zircaloy-4 in 360℃ Water", J. Nucl. Mater., 273(2), 177-181 (1999). https://doi.org/10.1016/S0022-3115(99)00030-6
  22. N. Ni, S. Lozano-Perez, J.M. Sykes, G.D.W. Smith, and C.R.M. Grovenor, "Focused Ion Beam Sectioning for the 3D Characterisation of Cracking in Oxide Scales Formed on Commercial ZIRLOTM Alloys During Corrosion in High Temperature Pressurised Water", Corros. Sci., 53(12), 4073-4083 (2011). https://doi.org/10.1016/j.corsci.2011.08.013
  23. J. Kim, K.J. Choi, C.B. Bahn, and J.H. Kim, "In Situ Raman Spectroscopic Analysis of Surface Oxide Films on Ni-base Alloy/Low Alloy Steel Dissimilar Metal Weld Interfaces in High-temperature Water", J. Nucl. Mater., 449(1-3), 181-187 (2014). https://doi.org/10.1016/j.jnucmat.2014.03.038
  24. J. Kim, S.H. Kim, K.J. Choi, C.B. Bahn, I.S. Hwang, and J.H. Kim, "In-situ Investigation of Thermal Aging Effect on Oxide Formation in Ni-base Alloy/Low Alloy Steel Dissimilar Metal Weld Interfaces", Corros. Sci., 86, 295-303 (2014). https://doi.org/10.1016/j.corsci.2014.06.006
  25. J.H. Kim and I.S. Hwang, "Development of an in Situ Raman Spectroscopic System for Surface Oxide Films on Metals and Alloys in High Temperature Water", Nucl. Eng. Des., 235(9), 1029-1040 (2005). https://doi.org/10.1016/j.nucengdes.2004.12.002
  26. H. Bethge and J. Heydenreich, "Electron Microscopy in Solid State Physics", VEB Deutscher Verlag der Wissenschaften, Germany (1982).
  27. T. Kim, K.J. Choi, S.C. Yoo, Y. Lee, and J.H. Kim, "Influence of Dissolved Hydrogen on the Early Stage Corrosion Behavior of Zirconium Alloys in Simulated Light Water Reactor Coolant Conditions", Corros. Sci., 131, 235-244 (2018). https://doi.org/10.1016/j.corsci.2017.11.026
  28. M. Kadleikova, J. Breza, and M. Vesely, "Raman Spectra of Synthetic Sapphire", Microelectron. J., 32 (12), 955-958 (2001). https://doi.org/10.1016/S0026-2692(01)00087-8
  29. X. Guo, "Hydrothermal Degradation Mechanism of Tetragonal Zirconia", J. Mater. Sci., 36(15), 3737-3744 (2001). https://doi.org/10.1023/A:1017925800904
  30. J.K. Lee and H. Kim, "Surface Crack Initiation in 2YTZP Ceramics by Low Temperature Aging", Ceram. Int., 20(6), 413-418 (1994). https://doi.org/10.1016/0272-8842(94)90028-0
  31. X. Guo, "Property Degradation of Tetragonal Zirconia Induced by Low-Temperature Defect Reaction With Water Molecules", Chem. Mater., 16(21), 3988-3994 (2004). https://doi.org/10.1021/cm040167h
  32. X. Guo and Z. Zhang, "Grain Size Dependent Grain Boundary Defect Structure: Case of Doped Zirconia", Acta Mater., 51(9), 2539-2547 (2003). https://doi.org/10.1016/S1359-6454(03)00052-1