Acknowledgement
This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) and financial resources from the Nuclear Safety and Security Commission (NSSC), Republic of Korea (Grant No. 2004025).
References
- B. Briyatmoko. Identification of High Confidence Nuclear Forensics Signatures for Mining, Milling and Conversion Process, International Atomic Energy Agency Report, IAEA-TECDOC-1820 (2017).
- International Atomic Energy Agency. Application of Nuclear Forensics in Combating Illicit Trafficking of Nuclear and Other Radioactive Material, IAEA Report, IAEA-TECDOC-1730 (2014).
- H. Bateman, "Solution of a System of Differential Equations Occurring in the Theory of Radioactive Transformations", in: Proceeding of the Cambridge Philosophical Society: Mathematical and Physical Science, 15, 423-427, Cambridge Philosophical Society, Cambridge (1910).
- J. Cetnar, P. Stanisz, and M. Oettingen, "Linear Chain Method for Numerical Modelling of Burnup Systems", Energies, 14(6), 1520 (2021). https://doi.org/10.3390/en14061520
- A.F. Pacheco and L. Moral, "Algebraic Approach to the Radioactive Decay Equations", Am. J. Phys., 71, 684 (2003). https://doi.org/10.1119/1.1571834
- E. Levy, "Decay Chain Differential Equations: Solutions Through Matrix Analysis", Comput. Phys. Commun., 234, 188-194 (2019). https://doi.org/10.1016/j.cpc.2018.07.011
- A. E. Isotalo and P.A. Aarnio, "Comparison of Depletion Algorithms for Large Systems of Nuclides", Ann. Nucl. Energy, 38(2-3), 261-268 (2011). https://doi.org/10.1016/j.anucene.2010.10.019
- A.G. Croff, "ORIGEN2: A Versatile Computer Code for Calculating the Nuclide Compositions and Characteristics of Nuclear Materials", Nucl. Technol., 62(3), 335-352 (1983). https://doi.org/10.13182/NT83-1
- M. Pusa and J. Leppanen, "Computing the Matrix Exponential in Burnup Calculations", Nucl. Sci. Eng., 164(2), 140-150 (2010). https://doi.org/10.13182/NSE09-14
- M.J. Kristo, A.M. Gaffney, N. Marks, K. Knight, W.S. Cassata, and Ian D. Hutcheon, "Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control", Annu. Rev. Earth Planet. Sci., 44, 555-579 (2016). https://doi.org/10.1146/annurev-earth-060115-012309
- R.W. Williams, A.M. Gaffney, and M.J. Kristo. Radiochronometry Guidance, Lawrence Livermore National Laboratory Technical Report, LLNL-TR-701379 (2016).
- International Technical Working Group, ITWG Guideline on Age Dating (Production Date Determination), ITWG-INFL-APDP-v1 (2016).
- A.L. Fauree and T. Dalger, "Age Dating of Individual Micrometer-Sized Uranium Particles by Secondary Ion Mass Spectrometry: An Additional Fingerprint for Nuclear Safeguards Purposes", Anal. Chem., 89(12), 6663-6669 (2017). https://doi.org/10.1021/acs.analchem.7b00887
- T.M. Kayzar, and R.W. Williams, "Developing 226Ra and 227Ac Age-Dating Techniques for Nuclear Forensics to Gain Insight From Concordant and Nonconcordant Radiochronometers", J. Radioanal. Nucl. Chem., 307(3), 2061-2068 (2016). https://doi.org/10.1007/s10967-015-4435-4
- Z. Varga, C. Venchiarutti, A. Nicholl, J. Krajko, R. Jakopic, K. Mayer, S. Richter, and Y. Aregbe, "IRMM- 1000a and IRMM-1000b Uranium Reference Materials Certified for the Production Date. Part I: Methodology, Preparation and Target Characteristics", J. Radioanal. Nucl. Chem., 307(2), 1077-1085 (2016). https://doi.org/10.1007/s10967-015-4227-x
- Z. Varga, A. Nicholl, J. Zsigrai, M. Wallenius, and K. Mayer, "Methodology for the Preparation and Validation of Plutonium Age Dating Materials", Anal. Chem., 90(6), 4019-4024 (2018). https://doi.org/10.1021/acs.analchem.7b05204
- A.M. Gaffney, J.B.N. Wimpenny, T. Parsons-Davis, R.W. Williams, R.A. Torrese, and B.W. Chung, "A Case Study in Plutonium Radiochronometry Using Multiple Isotope Systems", J. Radioanal. Nucl. Chem., 318(1), 287-295 (2018). https://doi.org/10.1007/s10967-018-6131-7
- MathWorks. 2021. "Explanation of Funm (Evaluate General Matrix Function) Function." MathWorks. Accessed Nov. 8 2021. Available from: https://kr.mathworks.com/help/matlab/ref/funm.
- MathWorks. 2021. "Explanation of Vpasolve (Solve Equations Numerically) Function." MathWorks. Accessed Nov. 8 2021. Available from: https://kr.mathworks.com/help/symbolic/sym.vpasolve.
- A. Morgenstern, C. Apostolidis, and K. Mayer, "Age Determination of Highly Enriched Uranium: Separation and Analysis of 231Pa", Anal. Chem., 74(21), 5513-5516 (2002). https://doi.org/10.1021/ac0203948
- Korea Laboratory Accreditation Scheme, Guidelines for Estimating and Expressing Uncertainty in Measurement Results, KOLAS-G-002 (2020).
- Oak Ridge National Laboratory. Bateman Equation Adaptation for Solving and Integrating Peak Activity Into EPA ELCR and Dose Models, ORNL Report, ORNL/TM-2020/1780 (2020).
- World Information Service on Energy Uranium Project. December 14 2020. "Universal Decay Calculator." WISE Uranium Project. Accessed Nov. 15 2021. Available from: https://www.wise-uranium.org/rcc.html.
- A.M. Gaffney, A. Hubert, W.S. Kinman, M. Magara, A. Okubo, F. Pointurier, K.C. Schorzman, R.E. Steiner, and R.W. Williams, "Round-Robin 230Th-234U Age Dating of Bulk Uranium for Nuclear Forensics", J. Radioanal. Nucl. Chem., 307, 2055-2060 (2016). https://doi.org/10.1007/s10967-015-4334-8