References
- Russell, S., and Norvig, P., "Artificial Intelligence-A Modern Approach", Prentice Hall, Hoboken, New Jersey, 2009, pp.30-32.
- Shin, S. J., Jo, C. R., Jeon, H. S., Yoon, S. H., and Kim, T. Y., "A survey on deep reinforcement learning libraries", ETRI, 34(6), 2019, pp.87-99.
- Yun, H. J., Park, N. S., Yoon, J. K., and Son, Y. S., "Research trends on deep reinforcement learning", ETRI, 34(4), 2019, pp.1-14.
- Wo, J. H., "Collision avoidance for an unmanned surface vehicle using deep reinforcement learning", Ph.D. Thesis, Seoul National University, Seoul, Feb 2018.
- Sharma, T., "Optimum flight trajectories for terrain collision avoidance", Master's Thesis, Royal Melbourne Institute of Technology University, Melbourne, Australia, Mar 2006.
- Baomar, H., and Bentley, P. J., "Autonomous navigation and landing of airliners using artificial neural networks and learning by imitation", 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, Hawaii, USA, 2017.
- Kim, J. S., "Motion planning of robot manipulators for a smoother path using a twin delayed deep deterministic policy gradient with hindsight experience replay", Applied Sciences, 10(2), 575, 2020, pp.5-6.
- Fujimoto, S., Hoof, H., and Meger, D., "Addressing function approximation error in actor-critic methods", Proceedings of the 35th International Conference on Machine Learning, PMLR (Proceedings of Machine Learning Research), Stockholmsmassan, Stockholm, Sweden, 2018, pp.1587-1596.
- Xie, J., Peng, X., Wang, H., Niu, W., and Zheng, X., "UAV autonomous tracking and landing based on deep reinforcement learning strategy", Sensors, 20(19), 5630, 2020, pp.7-13.
- Moon, I. C., Kim, J. M, and Kim, D. J., "Modeling and simulation on One-vs-One air combat with deep reinforcement learning", Journal of the Korea Society for Simulation, 29(1), 2020, pp.39-46. https://doi.org/10.9709/JKSS.2020.29.1.039
- Meyer, E., Heiberg, A., Rasheed A., and San, A. O., "COLREG-compliant collision avoidance for unmanned surface vehicle using deep reinforcement learning", IEEE Access, 8, 2020, pp.165344-165364. https://doi.org/10.1109/access.2020.3022600
- Young, C. S., "Warning system concepts to prevent controlled flight into terrain (CFIT)", AIAA/IEEE Digital Avionics Systems Conference, Fort Worth, TX, USA, 1993, pp.463-474.
- Zhang, Y., Antonsson, E. K., and Grote, K., "A new threat assessment measure for collision avoiddance system", 2006 IEEE Intelligent Transportation Systems Conference, Toronto, ON, Canada, 2006, pp.968-975.
- Kallstrom, J., and Heintz, F., "Reinforcement learning for computer generated forces using open-source software", Interservice/Industry Training, Simulation, and Education Conference, Orlando, FL, USA, 2019, Paper No. 19197, pp.1-11.