DOI QR코드

DOI QR Code

엔트로피 필터 구현에 대한 Hardware Architecture

Hardware Architecture for Entropy Filter Implementation

  • Sim, Hwi-Bo (Dept. of Electronics Engineering, Dong-A University) ;
  • Kang, Bong-Soon (Dept. of Electronics Engineering, Dong-A University)
  • 투고 : 2022.05.16
  • 심사 : 2022.06.21
  • 발행 : 2022.06.30

초록

정보 엔트로피의 개념은 다양한 분야에서 폭넓게 응용되고 있다. 최근 영상처리 분야에서도 정보 엔트로피 개념을 응용한 기술들이 많이 개발되고 있다. 현대 산업에서 컴퓨터 비전 기술들의 중요성과 수요가 증가함에 따라, 영상처리 기술들이 현대 산업에 효율적으로 적용되기 위해서는 실시간 처리가 가능해야 한다. 영상의 엔트로피 값을 추출하는 것은 소프트웨어로는 계산량이 복잡해 실시간 처리가 어려우며 실시간 처리가 가능한 영상 엔트로피 필터의 하드웨어 구조는 제안된 적이 없다. 본 논문에서는 barrel shifter를 사용하여 실시간 처리가 가능한 히스토그램 기반 엔트로피 필터의 하드웨어 구조를 제안한다. 제안한 하드웨어는 Verilog HDL을 이용하여 설계하였고, Xilinx사의 xczu7ev-2ffvc1156을 Target device로 설정하여 FPGA 구현하였다. Xilinx Vivado 프로그램을 이용한 논리합성 결과 4K UHD의 고해상도 환경에서 최대 동작 주파수 750.751MHz를 가지며, 1초에 30장 이상의 영상을 처리하며 실시간 처리 기준을 만족함을 보인다.

The concept of information entropy has been widely applied in various fields. Recently, in the field of image processing, many technologies applying the concept of information entropy have been developed. As the importance and demand of computer vision technologies increase in modern industry, real-time processing must be possible in order for image processing technologies to be efficiently applied to modern industries. Extracting the entropy value of an image is difficult to process in real-time due to the complexity of computation in software, and a hardware structure of an image entropy filter capable of real-time processing has never been proposed. In this paper, we propose for the first time a hardware structure of a histogram-based entropy filter that can be processed in real time using a barrel shifter. The proposed hardware was designed using Verilog HDL, and Xilinx's xczu7ev-2ffvc1156 was set as the target device and FPGA was implemented. As a result of logic synthesis using the Xilinx Vivado program, it has a maximum operating frequency of 750.751 MHz in a 4K UHD high-resolution environment, and it processes more than 30 images per second and satisfies the real-time processing standard.

키워드

과제정보

This paper was supported by research funds from Dong-AUniversity.

참고문헌

  1. T. Lan, Z. Cai and B. Ye, "Modeling of Lunar Digital Terrain Entropy and Terrain Entropy Distribution Model," in IEEE Transactions on Geoscience and Remote Sensing, vol.59, no.2, pp.1052-1066, 2021. DOI: 10.1109/TGRS.2020.2999582
  2. A. K. Singh, H. P. Singh and Karmeshu, "Analysis of Finite Buffer Queue: Maximum Entropy Probability Distribution With Shifted Fractional Geometric and Arithmetic Means," in IEEE Communications Letters, vol.19, no.2, pp. 163-166, 2015. DOI: 10.1109/LCOMM.2014.2377236
  3. H. Li, W. Du, K. Fan, J. Ma, K. Ivanov and L. Wang, "The Effectiveness Assessment of Massage Therapy Using Entropy-Based EEG Features Among Lumbar Disc Herniation Patients Comparing With Healthy Controls," in IEEE Access, vol.8, pp.7758-7775, 2020. DOI: 10.1109/ACCESS.2020.2964050
  4. J. Prakash, S. Mandal, D. Razansky and V. Ntziachristos, "Maximum Entropy Based Non-Negative Optoacoustic Tomographic Image Reconstruction," in IEEE Transactions on Biomedical Engineering, vol.66, no.9, pp.2604-2616, 2019. DOI: 10.1109/TBME.2019.2892842
  5. Baljit Singh, Amar Partap Singh, "Edge Detection in Gray Level Images based on the Shannon Entropy," Journal of Computer Science, Vol.4, No.3, pp.186-191, 2008. DOI: 10.3844/jcssp.2008.186.191
  6. S. Sankaran and G. Sethumadhavan, "Entropy-Based Colour Splitting in Dermoscopy Images to Identify Internal Borders," 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), pp.771-774, 2018. DOI: 10.1109/ICIRCA.2018.8597177
  7. F. Hrzic, V. Jansky, D. Susanj, G. Gulan, I. Kozar and D. Z. Jericevic, "Information entropy measures and clustering improve edge detection in medical X-ray images," 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp.0164-0166, 2018. DOI: 10.23919/MIPRO.2018.8400032
  8. Y. Zou, J. Zhang, M. Upadhyay, S. Sun and T. Jiang, "Automatic Image Thresholding Based on Shannon Entropy Difference and Dynamic Synergic Entropy," in IEEE Access, vol.8, pp.171218-171239, 2020. DOI: 10.1109/ACCESS.2020.3024718
  9. G. Chen and B. Wen, "An Improved Image Entropy Algorithm Suitable for Digital Painting Style," 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp.1742-1746, 2020. DOI: 10.1109/ICMCCE51767.2020.00382
  10. J. Zhang, Y. Liu and H. Xing, "Application of Improved 2-D Entropy Algorithm in Rubber Tree Image Segmentation," 2019 2nd International Conference on Safety Produce Informatization (IICSPI), pp.311-314, 2019. DOI: 10.1109/IICSPI48186.2019.9096014
  11. S. A. Fahmy, P. Y. K. Cheung and W. Luk, "Novel FPGA-based implementation of median and weighted median filters for image processing," International Conference on Field Programmable Logic and Applications, pp.142-147, 2005. DOI: 10.1109/FPL.2005.1515713
  12. S. M. Lee, and B. S. Kang, "Hardware Implementation of Minimum Filter based on 2-D Cumulative Histogram", ISOCC, pp.297-298, 2019.