DOI QR코드

DOI QR Code

Morphological and molecular evidence of the hybrid origin of Crepidiastrum ×muratagenii in Korea

홍도고들빼기의 형태 다양성 및 잡종 기원의 분자 증거

  • 장영종 (국립수목원산림생물다양성연구과) ;
  • 박범균 (국립수목원산림생물다양성연구과) ;
  • 손동찬 (국립수목원산림생물다양성연구과) ;
  • 최병희 (인하대학교생명과학과)
  • Received : 2022.05.30
  • Accepted : 2022.06.24
  • Published : 2022.06.30

Abstract

The plant "Hong-do-go-deul-ppae-gi" has been considered as Crepidiastrum × muratagenii, a hybrid between C. denticulatum and C. lanceolatum, based on its morphological traits and geographical distribution. To reveal the hybrid origin of Hong-do-go-deul-ppae-gi, we examined additional morphological traits of this plant and its putative parents (C. denticulatum, C. lanceolatum, C. platyphyllum) and analyzed one nuclear ribosomal internal transcribed spacer (ITS) region and four chloroplast regions (trnT-L, trnL-F, rpl16 intron, and rps16 intron). As a result of examining the morphological traits, putative hybrid individuals were classified into three types based on the habit, cauline leaf, outer phyllary, and achene beak traits. A molecular analysis found that the ITS sequences of Type 1 and Type 2 individuals showed additive species-specific sites of C. denticulatum and C. lanceolatum. Plastid sequences of Type 1 and Type 2 individuals showed C. denticulatum and C. lanceolatum sequences, respectively. However, Type 3 individuals had ITS and plastid sequences corresponding to C. denticulatum. Accordingly, Type 1 and Type 2 individuals not only share morphological traits with C. denticulatum and C. lanceolatum but also show additive species-specific sites for C. denticulatum and C. lanceolatum, and not C. platyphyllum, supporting its origin as a hybrid between C. denticulatum and C. lanceolatum. Type 3 had morphological traits similar to other hybrid types but was distinguished with respect to outer phyllaries and demonstrated some resemblance to C. denticulatum. In a molecular analysis, Type 3 was found to be identical with regard to the sequence of C. denticulatum and was judged to be an ecological variation of C. denticulatum.

홍도고들빼기는 이전 연구에서 형태적 특성과 지리적 분포를 바탕으로 이고들빼기와 갯고들빼기의 잡종인 Crepidiastrum ×muratagenii로 제안된 바 있지만, 이에 대한 분자적 증거를 제시하지 못하였다. 본 연구는 홍도고들빼기의 잡종 기원을 밝히기 위하여 홍도고들빼기와 그 근연종의 추가적인 형태적 형질을 관찰하였으며, 핵리보솜 internal transcribed spacer (ITS) 구간과 엽록체 구간(trnT-L, trnL-F, rpl16 intron, rps16 intron)의 염기서열을 비교·분석하였다. 형태적 특성을 검토한 결과, 잡종형은 생육형, 줄기잎, 외총포편, 수과의 특성을 바탕으로 세 가지 유형으로 구분되었다. 분자 분석 결과, Type 1형과 Type 2형은 ITS 구간의 종식 별부위에서 혼성화가 관찰되었으며, 엽록체 구간에서는 Type 1형은 이고들빼기, Type 2형은 갯고들빼기 서열이 각각 관찰되었다. Type 3형은 ITS와 엽록체 구간 모두 이고들빼기와 동일한 서열을 보였다. Type 1형과 Type 2형은 이고들빼기와 갯고들빼기의 형태가 혼합되어 나타날 뿐 아니라, 분자 분석에서도 절영풀이 아닌, 갯고들빼기와 이고들빼기의 종식별부위에서 혼성화가 관찰되어 이고들빼기와 갯고들빼기의 잡종임을 지지하였다. 그러나 Type 3형은 형태적 형질이 다른 잡종형과 유사하나 외총포편이 이고들빼기와 유사한 점에서 구분되며, 분자 분석에서도 이고들빼기 서열과 동일하여, 이고들빼기의 생태변이로 판단되었다.

Keywords

Acknowledgement

The authors are grateful to the persons concerned at the KB herbaria for permitting the examination of specimens. This work was supported by the Korea National Arboretum (KNA1-1-23, 18-1).

References

  1. Aguilar, J. F., J. A. Rossello and G. N. Feliner 1999. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Molecular Ecology 8: 1341-1346. https://doi.org/10.1046/j.1365-294X.1999.00690.x
  2. Alvarez, I. and J. F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolition 29: 417-434. https://doi.org/10.1016/S1055-7903(03)00208-2
  3. Cho, M.-S., C.-S. Kim, S.-H. Kim, T. O. Kim, K.-I. Heo, J. Jun and S.-C. Kim. 2014. Molecular and morphological data reveal hybrid origin of wild Prunus yedoensis (Rosaceae) from Jeju Island, Korea: Implications for the origin of the flowering cherry. American Journal of Botany 101: 1976-1986. https://doi.org/10.3732/ajb.1400318
  4. Du, Z.-Y., C.-F. Yang, J.-M. Chen and Y.-H. Guo. 2009. Nuclear and chloroplast DNA sequences data support the origin of Potamogeton intortusifolius J.B. He in China as a hybrid between P. perfoliatus Linn. and P. wrightii Morong. Aquatatic Botany 91: 47-50. https://doi.org/10.1016/j.aquabot.2009.02.006
  5. Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
  6. Gil, H.-Y. and S.-C. Kim. 2016. Viola woosanensis, a recurrent spontaneous hybrid between V. ulleungdoensis and V. chaerophylloides (Violaceae) endemic to Ulleung Island, Korea. Journal of Plant Research 129: 807-822. https://doi.org/10.1007/s10265-016-0830-3
  7. Hoibova, E., J. Cizkova, P. Christelova, S. Taudien, E. de Langhe and J. Dolezel. 2011. The ITS1-5.8S-ITS2 sequence region in the Musaceae: Structure, diversity and use in molecular phylogeny. PLoS ONE 6: e17863. https://doi.org/10.1371/journal.pone.0017863
  8. Jang, Y.-J. and B.-H. Choi. 2021. Taxonomic identity of Crepidiastrum ×nakaii recorded in Hongdo Island. Korean Journal of Plant Taxonomy 51: 198-204. https://doi.org/10.11110/kjpt.2021.51.3.198
  9. Kilian, N., B. Gemeinholzer and H. W. Lack. 2009. Cichorieae. In Systematics, Evolution and Biogeography of Compositae. Funk, V. A., A. Susanna, T. F. Stuessy and R. J. Bayer (eds.), International Association for Plant Taxonomy, Vienna. Pp. 343-383.
  10. Kitamura, S. 1955. Compositae Japonicae. Pars Quarta. Memoirs of the College of Science, University of Kyoto, Series B 22: 77-126.
  11. Kokubugata, G., T. Kurihara, Y. Hirayama and K. Obata 2011. Molecular evidence for a natural hybrid origin of Ajuga ×mixta (Lamiaceae) using ITS sequence. Bullein of the National Museum of Nature and Science, Series B 37: 175-179.
  12. Lee, T. B. 1969. Plant resources in Korea. Bulletin of Seoul National University (Biological Agriculture) 20: 158. (in Korean)
  13. Lee, W. T. 1996. Lineamenta Florae Koreae. Academy Publishing Co, Seoul. 1688 pp. (in Korean)
  14. Les, D. H., N. M. Murray and N. P. Tippery. 2009. Systematics of two imperiled pondweeds (Potamogeton vaseyi, P. gemmiparus) and taxonomic ramifications for subsection Pusilli (Potamogetonaceae). Systematic Botany 34: 643-651. https://doi.org/10.1600/036364409790139727
  15. Li, W.-P. 2006. Natural hybridization between Aster ageratoides var. scaberulus and Kalimeris indica (Asteraceae): Evidence form morphology, karyotype, and ITS sequences. Botanical Studies 47: 191-197.
  16. Liu, S.-C., C.-T. Lu and J.-C. Wang. 2009. Reticulate hybridization of Alpinia (Zingiberaceae) in Taiwan. Journal of Plant Research 122: 305-316. https://doi.org/10.1007/s10265-009-0223-y
  17. Minh, B. Q., M. A. T. Nguyen and A. von Haeseler. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188-1195. https://doi.org/10.1093/molbev/mst024
  18. Nguyen, L.-T., H. A. Schmidt, A. von Haeseler and B. Q. Minh. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating Maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274. https://doi.org/10.1093/molbev/msu300
  19. Nieto Feliner, G., B. Gutierrez Larena and J. Fuertes Aguilar. 2004. Fine-scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). Annals of Botany 93: 189-200. https://doi.org/10.1093/aob/mch027
  20. Ohashi, H. and K. Ohashi. 2007. Hybrids in Crepidiastrum (Asteraceae). Journal of Japanese Botany 82: 337-347.
  21. Ono, H and D. Sato. 1935. Intergenera hibridigo en Cichorieae, II. Hibridoj de Crepidiastrum lanceolatum var. latifolium kaj Paraixeris denticulata. Journal of Japanese Genetics 11: 169-178. (in Esperanto)
  22. Oxelman, B., M. Liden and S. Berglund. 1997. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Systematic and Evolution 206: 393-410. https://doi.org/10.1007/BF00987959
  23. Pak, J.-H. and S. Kawano. 1992. Biosystematic studies on the genus Ixeris and its allied genera (Compositae-Lactuceae) (IV): Taxonomic treatments and nomenclature. Memoirs of the Faculty of Science, Kyoto University, Series of Biololgy 15: 29-61.
  24. Rieseberg, L. H., N. C. Ellstrand and M. Arnold. 1993. What can molecular and morphological markers tell us about hybridization? Critical Reviews in Plant Sciences 12: 213-241. https://doi.org/10.1080/713608045
  25. Saito, Y., G. Kokubugata, T. Katsuyama, W. Marubashi and T. Iwashina. 2003. Cytological comparisons of somatic chromosomes in ×Crepidiastrixeris denticulato-platyphylla and speculation of its parental species (Asteraceae). Chromosome Science 7: 43-48.
  26. Saito, Y., M. Moller, G. Kokubugata, T. Katsuyama, W. Marubashi and T. Iwashina. 2006. Molecular evidence for repeated hybridization events involved in the origin of the genus ×Crepidiastrixeris (Asteraceae) using RAPDs and ITS data. Botanical Journal of the Linnean Society 151: 333-343. https://doi.org/10.1111/j.1095-8339.2006.00513.x
  27. Sang, T., D. J. Crawford and T. F. Stuessy. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences of the United States of America 92: 6813-6817. https://doi.org/10.1073/pnas.92.15.6813
  28. Schwarzbach, A. E. and L. H. Rieseberg. 2002. Likely multiple origin of a diploid hybrid sunflower species. Molecular Ecology 11: 1703-1715. https://doi.org/10.1046/j.1365-294X.2002.01557.x
  29. Shih, C. and N. Kilian. 2011. Crepidiastrum. In Wu, Z.-Y., P. H. Raven and D.-Y. Hong (eds.) Flora of China, Vol. 20-21 (Asteraceae). Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, MO. Pp. 264-269.
  30. Shin, H., S.-H. Oh, Y. Lim, C.-W. Hyun, S.-H. Cho, Y.-I. Kim and Y.-D. Kim. 2014. Molecular evidence for hybrid origin of Aster chusanensis, an endemic species of Ulleungdo, Korea. Journal of Plant Biology 57: 174-185. https://doi.org/10.1007/s12374-014-0135-9
  31. Siripun, K. C. and E. E. Schilling. 2005. Molecular confirmation of the hybrid origin of Eupatorium godfreyanum (Asteraceae). American Journal of Botany 93: 319-325. https://doi.org/10.3732/ajb.93.2.319
  32. Small, R. L., J. A. Ryburn, R. C. Cronn, T. Seelanan and J. F. Wendel. 1998. The tortoise and the hare: Choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany 85: 1301-1315. https://doi.org/10.2307/2446640
  33. Taberlet, P., L. Gielly, G. Pautou and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105-1109. https://doi.org/10.1007/BF00037152
  34. Trifinopoulos, J., L.-T. Nguyen, A. von Haeseler and B. Q. Minh. 2016. W-IQ-TREE: A fast online phylogenetic tool for Maximum likelihood analysis. Nucleic Acids Research 44: W232-W235. https://doi.org/10.1093/nar/gkw256
  35. Wendel, J. F., A. Schnabel and T. Seelanan. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences of the United States of America 92: 280-284. https://doi.org/10.1073/pnas.92.1.280
  36. White, T. J., T. Bruns, A. Lee and J. Tayler. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Application. Innis, M., D. Gelfand, J. Sninsky and T. White. (eds.), Academic Press, San Diego, Pp. 315-322.
  37. Yamamoto, N., O. Yano. and H. Ikeda. 2009. A new hybrid, Crepidiastrum ×semiauriculatum (Asteraceae: Lactuceae), from Okayama Prefecture, Western Japan. Journal of Japanese Botany 84: 224-228.