DOI QR코드

DOI QR Code

Occurrence and Chemical Composition of Dolomite and Chlorite from Xiquegou Pb-Zn Deposit, China

중국 Xiquegou 연-아연 광상의 돌로마이트와 녹니석 산상과 화학조성

  • Yoo, Bong Chul (Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 유봉철 (한국지질자원연구원 희소금속광상연구센터)
  • Received : 2022.05.24
  • Accepted : 2022.06.20
  • Published : 2022.06.30

Abstract

The Xiquegou Pb-Zn deposit is located at the Qingchengzi orefield which is one of the largest Pb-Zn mineralized zone in the northeast of China. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Xiquegou deposit which is a Triassic magma-hydrothermal type deposit occurs as vein ore filled fractures along fault zone in unit 3 (dolomitic marble and schist) of Dashiqiao formation of the Paleoproterozoic Liaohe group. Xiquegou Pb-Zn deposit consists of quartz, apatite, calcite, pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, stannite, galena, tetrahedrite, electrum, argentite, native silver and pyrargyrite. Wallrock alteration of this deposit contains silicification, pyritization, dolomitization, chloritization and sericitization. Based on mineral petrography and paragenesis, dolomites from this deposit are classified two type (1. dolomite (D0) as wallrock, 2. dolomite (D1) as wallrock alteration in Pb-Zn mineralization quartz vein ore). The structural formulars of dolomites are determined to be Ca1.03-1.01Mg0.95-0.83Fe0.12-0.02Mn0.02-0.00(CO3)2(D0) and Ca1.16-1.00Mg0.79-0.44Fe0.53-0.13Mn0.03-0.00As0.01-0.00(CO3)2(D1), respectively. It means that dolomites from the Xiquegou deposit have higher content of trace elements compared to the theoretical composition of dolomite. The dolomite (D1) from quartz vein ore has higher content of these trace elements (FeO, PbO, Sb2O5 and As2O5) than dolomite (D0) from wallrock. Dolomites correspond to Ferroan dolomite (D0), and ankerite and Ferroan dolomite (D1), respectively. The structural formular of chlorite from quartz vein ore is (Mg1.65-1.08Fe2.94-2.50Mn0.01-0.00Zn0.01-0.00Ni0.01-0.00Cr0.02-0.00V0.01-0.00Hf0.01-0.00Pb0.01-0.00Cu0.01-0.00As0.03-0.00Ca0.02-0.01Al1.68-1.61)5.77-5.73(Si2.84-2.76Al1.24-1.16)4.00O10(OH)8. It indicated that chlorite of quartz vein ore is similar with theoretical chlorite and corresponds to Fe-rich chlorite. Compositional variations in chlorite from quartz vein ore are caused by mainly octahedral Fe2+ <-> Mg2+ (Mn2+) substitution and partly phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV).

Xiquegou 연-아연 광상은 중국 동북지역에선 가장 규모가 큰 연-아연 광화대 중의 하나인 Qingchengzi orefield에 위치한다. 이 광상의 주변지질은 시생대의 그래뉼라이트(granulite)와 이를 관입한 고원생대의 미그마타이트질 화강암과 고-중원생대의 소딕(sodic) 화강암을 부정합으로 피복한 고원생대의 Liaohe 층군 및 이들을 관입한 중생대의 섬록암과 몬조나이틱 화강암으로 구성된다. 이 광상은 고원생대의 Liaohe 층군내 Dashiqiao 층의 unit 3(돌로마이트질 대리암과 편암)내에 발달된 단층대를 따라 산출되는 맥상 광체로 트라이아스기의 마그마-열수형 광상에 해당된다. Xiquegou 연-아연 광상에서 석영, 인회석, 방해석, 황철석, 유비철석, 자류철석, 백철석, 섬아연석, 황동석, 황석석, 방연석, 사면동석, 에렉트럼, 휘은석, 자연은 및 농홍은석 등이 산출되며 모암변질로는 규화작용, 황철석화작용, 돌로마이트화작용, 녹니석화작용 및 견운모화작용 등이 관찰된다. 이 광상의 산출 광물조합 및 정출순서를 기초로, 돌로마이트는 1)모암인 돌로마이트(D0) 및 2)연-아연 광화작용에 따른 모암변질 산물인 돌로마이트(D1)로 두 유형이 확인된다. 이들 돌로마이트의 화학조성은 각각 Ca1.03-1.01Mg0.95-0.83 Fe0.12-0.02Mn0.02-0.00(CO3)2(D0) 및 Ca1.16-1.00Mg0.79-0.44Fe0.53-0.13Mn0.03-0.00As0.01-0.00(CO3)2(D1)로써 이론적인 돌로마이트의 화학조성보다 미량원소들의 함량이 높다. 특히, FeO, PbO, Sb2O5 및 As2O5 원소들은 모암변질 산물인 돌로마이트(D1)에서 높은 함량을 갖는다. 또한 이 광상의 모암에서 산출되는 돌로마이트(D0)는 Ferroan 돌로마이트에 해당되며 모암변질 산물인 돌로마이트(D1)는 철백운석 및 Ferroan 돌로마이트에 해당된다. 모암변질 산물인 녹니석의 화학조성은 (Mg1.65-1.08Fe2.94-2.50Mn0.01-0.00Zn0.01-0.00Ni0.01-0.00Cr0.02-0.00V0.01-0.00Hf0.01-0.00Pb0.01-0.00Cu0.01-0.00As0.03-0.00Ca0.02-0.01Al1.68-1.61)5.77-5.73(Si2.84-2.76Al1.24-1.16)4.00O10(OH)8로써 이론적인 녹니석과 유사하며 Fe-rich 녹니석에 해당된다. 또한 이 녹니석의 화학조성 변화는 주로 팔면체적 Fe2+ <-> Mg2+ (Mn2+) 치환과 일부 팬자이틱 또는 Tschermark 치환(Al3+,VI+Al3+,IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV)메카니즘에 의해 일어났음을 알 수 있다.

Keywords

Acknowledgement

이 연구는 2020년 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회 융합연구단 사업(No. CRC-15-06-KIGAM) 또는 한국지질자원연구원 융합사업인 "북한 광물자원 탐사기술 실증 및 잠재성 평가(19-8901, 20-8901)" 및 한국지질자원연구원 기본사업인 "국내 바나듐(V) 등 에너지 저장광물 정밀탐사기술 개발 및 부존량 예측(22-3211-1) 과제 지원을 받아 수행되었으며 이에 사의를 표한다. 바쁘신 와중에도 이 논문의 미비점을 지적, 수정하여 주신 편집위원장님, 김창성 박사님 및 익명의 심사위원님께 깊이 감사드립니다.

References

  1. Biondi, J.C., Santos, R.V. and Cury, L.F., 2013, The Paleoproterozoic Aripuana Zn-Pb-Ag (Au, Cu) volcanogenic massive sulfide deposit, Mato Grosso, Brazil: Geology, geochemistry of alteration, carbon and oxygen isotope modeling, and implications for genesis. Economic Geology, 108, 781-811. https://doi.org/10.2113/econgeo.108.4.781
  2. Bouabdellah, M., Sangster, D.F., Leach, D.L., Brown, A.C., Johnson, C. and Emsbo, P., 2012, Genesis of the TouissitBou Beker Mississippi Valley-Type District (Morocco-Algeria) and Its Relationship to the Africa-Europe Collision. Economic Geology, 107, 117-146. https://doi.org/10.2113/econgeo.107.1.117
  3. Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z. and Zhang, X., 2005, Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China, 48, 467-476.
  4. Chen, C., Lu, A., Cai, K. and Zhai, Y., 2002, Sedimentary characteristics of Mg-rich carbonate fromations and minerogenic fluids of magnesite and talc occurrences in early Proterozoic in eastern Liaoning province, China. Science in China, 45, 84-92. https://doi.org/10.1007/BF02932210
  5. Cohen, J.F., 2011, Compositional Variations in Hydrothermal White Mica and Chlorite from Wall-Rock Alteration at the Ann-Mason Porphyry Copper Deposit, Nevada. Master thesis, Oregon State University, Oregon, USA, 121p.
  6. Deer, W.A., Howie, R.A. and Zussman, J., 2009, Rock-Forming Minerals,Layered Silicates Excluding Micas and Clay Minerals, 2nd edition, 81-156.
  7. Deng, G.Q., 1983, Types and main ore controlling factors of the Liaohe group in the middle of Liaodong. Liaoning Acta Geologica Sinica, 1, 53-70 (in Chinese)
  8. Di, Q.Y., Xue, G.Q., Zeng, Q.D., Wang, Z.X. and An, Z.G., 2020, Magnetotelluric exploration of deep-seated gold deposits in the Qingchengzi orefield, Eastern Liaoning (China), using a SEP system. Ore Geology Reviews, 122, 103501. https://doi.org/10.1016/j.oregeorev.2020.103501
  9. Duan, X.X., Zeng, Q.D., Wang, Y.B., Zhou, L.L. and Chen, B., 2017, Genesis of the Pb-Zn deposits of the Qingchengzi ore field, eastern Liaoning, China: Constraints from carbonate LA-ICPMS trace element analysis and C-O-S-Pb isotopes. Ore Geology Reviews, 89, 752-771. https://doi.org/10.1016/j.oregeorev.2017.07.012
  10. Feng, H.X., Shen, P., Zhu, R.X., Zi, J.W., Groves, D.I., Li, C.H., Wu, Y., Ma, G. and Li, T.Y., 2022, Precise ages of gold mineralization and pre-gold hydrothermal activity in the Baiyun gold deposit, northeastern China: in situ U-Pb dating of hydrothermal xenotime and rutile. Mineralium Deposita, online.
  11. Foster, M.D., 1962, Interpretation of the composition and a classification of the chlorites. Geological Survey Professional Paper, 414-A, 1-33.
  12. Gomez-Rivas, E., Corbella, M., Martin-Martin, J.D., Stafford, S.L., Teixell, A., Bons, P.D., Griera, A. and Cardellach, E., 2014, Reactivity of dolomitizing fluids and Mg source evaluation of fault controlled dolomitization at the Benicassim outcrop analogue (Maestrat basin, E Spain). Marine and Petroleum Geology, 55, 26-42. https://doi.org/10.1016/j.marpetgeo.2013.12.015
  13. Grandia, F., Canals, A., Cardellach, E., Banks, D.A. and Perona, J., 2003, Origin of ore-forming brines in sediment-hosted Zn-Pb deposits of the Basque-Cantabrian Basin, Northern Spain. Economic Geology, 98, 1397-1411. https://doi.org/10.2113/gsecongeo.98.7.1397
  14. Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K., 1978, Summary and critique of the thermodynamic properties of rock forming minerals. American Journal of Science, 278-A, 229p.
  15. Hendry, J.P., Gregg, J.M., Shelton, K.L., Somerville, I. and Crowley, S., 2015, Origin, characteristics and distribution of fault-related and fracture-related dolomitization: Insights from Mississippian carbonates, Isle of Man, UK. Sedimentology, 62, 717-752. https://doi.org/10.1111/sed.12160
  16. Jimenez, T.R.A., 2011, Variation in hydrothermal muscovite and chlorite composition in the Highland valley porphyry Cu-Mo district, British Columbia, Canada. Master thesis, University of British Columbia, Vancouver, Canada, 233p.
  17. Jiang, S.Y. and Wei, J.Y., 1989, Geochemistry of the Qingchengzi lead-zinc deposit. Mineral Deposits, 8, 20-28 (in Chinese with English abstract).
  18. Johnson, A.W., Shelton, K.L., Gregg, J.M., Somerville, I.D., Wright, W.R. and Nagy, Z.R., 2009, Regional studies of dolomites and their included fluids: Recognizing multiple chemically distinct fluids during the complex diagenetic history of Lower Carboniferous (Mississippian) rocks of the Irish Zn-Pb ore field. Mineralogy and Petrology, 96, 1-18. https://doi.org/10.1007/s00710-008-0038-x
  19. Konari, M.B. and Rastad, E., 2018, Nature and origin of dolomitization associated with sulphide mineralization: New insights from the Tappehsorkh Zn-Pb (-Ag-Ba) deposit, Irankuh mining district, Iran. Geological Journal, 53, 1-21. https://doi.org/10.1002/gj.2875
  20. Li, J.A., Cai, W.Y., Wang, K.Y., Liu, H.I., Konare, Y., Qian, Y., Lee, G.J. and Yoo, B.C., 2019, Paleoproterozoic SEDEX-type stratiform mineralization overprinted by Mesozoic vein-type mineralization in the Qingchenzi Pb-Zn deposit, Northeastern China. Journal of Asian Earth Sciences, 184, 104009. https://doi.org/10.1016/j.jseaes.2019.104009
  21. Li, D.D., Wang, Y.W., Wang, J.B., Lai, C.K., Qiu, J.Z., Wang, W, Li, S.H. and Zhang, Z.C., 2021, Iron isotopes as an ore-fluid tracer: Case study of Qingchengzi Pb-ZnAu(-Ag) orefield in Liaoning, NE China. Resource Geology
  22. Li, S.Z., Zhao, G.C., Santosh, M., Liu, X. and Dai, L.M., 2011, Palaeoproterozoic tectonothermal evolution and deep crustal processes in the Jiao-Liao-Ji belt, North China Craton: A review. Geological Journal, 46, 525-543. https://doi.org/10.1002/gj.1282
  23. Li, S.Z., Zhao, G.C., Sun, M., Han, Z.Z., Luo, Y., Hao, D.F. and Xia, X.P., 2005, Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24, 659-674. https://doi.org/10.1016/j.jseaes.2003.11.008
  24. Li, Z., Chen, B. and Wei, C., 2017, Is the Paleoproterozoic Jiao-Liao-Ji belt (North China Craton) a rift?. International Journal of Earth Sciences, 106, 355-375. https://doi.org/10.1007/s00531-016-1323-2
  25. Liu, G.P., 1999, Isospatial metallogenesis in Qingchengzi ore filed, Liaoning, Geological Exploration for Non-ferrous Metals, 8, 277-282 (in Chinese with English abstract).
  26. Ma, Y.B., Bagas, L., Xing, S.W., Zhang, S.T., Wang, R.J., Li, N., Zhang, Z.J., Zou, Y.F., Yang, X.Q., Wang, Y. and Zhang, Y., 2016, Genesis of the stratiform Zhenzigou Pb-Zn deposit in the North China Craton: Rb-Sr and C-O-S-Pb isotope constraints. Ore Geology Reviews, 79, 88-104. https://doi.org/10.1016/j.oregeorev.2016.05.009
  27. Morrow, D.W., 1998, Regional subsurface dolomitization: Models and constraints. Geoscience Canada, 25, 57-70.
  28. Nagy, Z.R., Gregg, J.M., Shelton, K.L., Becker, S.P., Somerville, I.D. and Johnson, A.W., 2004, Early dolomitization and fluid migration through the Lower Carboniferous carbonate platform in the SE Irish Midlands: implications for reservoir attributes. In: The geometry and petrogenesis of dolomite hydrocarbon reservoirs, Braithwaith, C.J., Rizzi, G., Darke, G. (eds), London: Geological Society, London, Special Publications 235, 367-392.
  29. Neall, F.B. and Phillips, G.N., 1987, Fluid-wallrock interaction in an Archean hydrothermal gold deposit: A thermodynamic model for the Hunt mine, Kambalda. Economic Geology, 82, 1679-1694. https://doi.org/10.2113/gsecongeo.82.7.1679
  30. Plissart, G., Femenias, O., Maruntiu, M., Diot, H. and Demaiffe, D., 2009, Mineralogy and geothermometry of gabbro-derived listvenites in the Tisovita-Iuti ophiolite, southwestern Romania. Canadian Mineralogist, 47, 81-105. https://doi.org/10.3749/canmin.47.1.81
  31. Rajabi, A., Rastad, E., Canet, C. and Alfonso, P., 2015, The early Cambrian Chahmir shale-hosted Zn-Pb deposit, Central Iran: An example of vent-proximal SEDEX mineralization. Mineralium Deposita, 50, 571-590. https://doi.org/10.1007/s00126-014-0556-x
  32. Reinhold, C., 1998, Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, 121, 71-95. https://doi.org/10.1016/S0037-0738(98)00077-3
  33. Ren, Y., Zhong, D., Gao, C., Yang, Q., Xie, R., Jia, L., Jiang, Y. and Zhong, N., 2017, Dolomite geochemistry of the Cambrian Longwangmiao formation, eastern Sichuan basin: Implication for dolomitization and reservoir prediction. Petroleum Research, 2, 64-76. https://doi.org/10.1016/j.ptlrs.2017.06.002
  34. Song, Y.H., Yang, F.C., Yan, G.L., Wei, M.H. and Shi, S.S., 2017, Characteristics of mineralization fluids and tracers of mineralization material sources of the Qingchengzi lead-zinc deposit in Liaoning Province. Geology and Exploration, 53, 259-269 (in Chinese with English abstract).
  35. Walshe, J.L., 1986, A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal system. Economic Geology, 81, 687-703. https://doi.org/10.2113/gsecongeo.81.3.681
  36. Walshe, J.L. and Solomon, M., 1981, An investigation into the environment of formation of the volcanichosted Mt. Lyell copper deposits, using geology, mineralogy, stable isotopes, and a six-component chlorite solid solution model. Economic Geology, 76, 246-284. https://doi.org/10.2113/gsecongeo.76.2.246
  37. Wang, Y.C., Wang, K.Y., Zhang, S., Liang, Y.H., Li, J.F., Fu, L.J. and Wang, Z.G., 2015, Characteristics of hydrothermal superposition mineralization and fluid origins of the Xiaotongjiapuzi gold deposit in Liaoning Province, Geology and Exploration, 51, 79-87 (in Chinese with English abstract).
  38. Wilkinson, J.J., 2010, A review of fluid inclusion constraints on mineralization in the Irish ore field and implications for the genesis of sediment-hosted Zn-Pb deposits. Economic Geology, 105, 417-442. https://doi.org/10.2113/gsecongeo.105.2.417
  39. Wilkinson, J.J., Eyre, S.L. and Boyce, A.J., 2005, Ore-forming processes in Irish-Type carbonate-hosted Zn-Pb deposits: Evidence from mineralogy, chemistry, and isotopic composition of sulphides at the Lisheen mine. Economic Geology, 100, 63-86. https://doi.org/10.2113/100.1.0063
  40. Wright, W.R., Somerville, I.D., Gregg, J.M., Shelton, K.L. and Johnson, A.W., 2004, Irish Lower Carboniferous replacement dolomite: Isotopic modelling evidence for a diagenetic origin involving low-temperature modified seawater. In: The geometry and petrogenesis of dolomite hydrocarbon reservoirs, Braithwaith, C.J., Rizzi, G., Darke, G. (eds), London: Geological Society, London, Special Publications, 235, 75-97.
  41. Yavuz, F., Kumral, M., Karakaya, N., Karakaya, M.C. and Yildirim, D.K., 2015, A windows program for chlorite calculation and classification. Computers & Geosciences, 81, 101-113. https://doi.org/10.1016/j.cageo.2015.04.011
  42. Yoo, B.C., 2021a, Occurrence and chemical composition of dolomite from Zhenzigou Pb-Zn deposit, China. Korean Journal of Mineralogy and Petrology, 34, 177-191. https://doi.org/10.22807/KJMP.2021.34.3.177
  43. Yoo, B.C., 2021b, Occurrence and chemical composition of dolomite from Komdok Pb-Zn deposit. Korean Journal of Mineralogy and Petrology, 34, 107-120. https://doi.org/10.22807/KJMP.2021.34.2.107
  44. Yoo, B.C., 2021c, Occurrence and chemical composition of white mica and chlorite from laminated quartz vein of Unsan Au deposit. Korean Journal of Mineralogy and Petrology, 34, 1-14. https://doi.org/10.22807/KJMP.2021.34.1.1
  45. Yoo, B.C., Lee, G.J., Lee, J.K., Ji, E.K. and Lee, H.K., 2009, Element dispersion and wallrock alteration from Samgwang deposit. Economic and Environmental Geology, 42, 177-193.
  46. Yu, G., Chen, J.F., Xue, C.J., Chen, Y.C., Chen, F.K. and Du, X.Y., 2009, Geochronological framework and Pb, Sr isotope geochemistry of the Qingchengzi Pb-Zn-Ag-Au orefield, Northeastern China. Ore Geology Reviews, 35, 367-382. https://doi.org/10.1016/j.oregeorev.2008.11.009
  47. Zane, A. and Weiss, Z., 1998, A procedure for classifying rock-forming chlorites based on microprobe data. Rendiconti Lincei. Scienze Fisiche e Naturali, 9, 51-56.
  48. Zentmyer, R.A., Pufahl, P.K., James, N.P. and Hiatt, E.E., 2011, Dolomitization on an evaporitic Paleoproterozoic ramp: Widespread synsedimentary dolomite in the Denault Formation, Labrador Trough, Canada. Sedimentary Geology, 238, 116-131. https://doi.org/10.1016/j.sedgeo.2011.04.007
  49. Zhang, Z.C., Wang, Y.W., Li, D.D. and Lai, C.K., 2019, Lithospheric architecture and metallogenesis in Liaodong Peninsula, North China craton: insights from zircon HfNd isotope mapping. Minerals, 9, 10.3390/min9030179.
  50. Zhou, L.L., Zeng, Q.D., Liu, J.M., Duan, X.X., Sun, G.T., Wang, Y.B. and Chen, P.W., 2020, Tracing mineralization history from the compositional textures of sulfide association: A case study of the Zhenzigou stratiform Zn-Pb deposit, NE China. Ore Geology Reviews, 126, 103792. https://doi.org/10.1016/j.oregeorev.2020.103792