Acknowledgement
This work is supported by National Natural Science Foundation of China (52009131, 52074154, 51904153) and Beijing Natural Science Foundation (8204068).
References
- Albertz, M., Beaumont, C., Shimeld, J.W., Ings, S.J. and Gradmann, S. (2010), "An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 1. Comparison of observations with geometrically simple numerical models", Tectonics, 29, TC4017. https://doi.org/10.1029/2009TC002539.
- Hao, X.J., Yuan, L., Xue, J.H., Wang, S.H., Ren, B., Zhang, X.Y. and Li, Y.L. (2018), "Physical model test and evaluation for the tunnel stability influenced by magnitude and path of loading", J. Test. Eval., 48(2), 1452-1477, https://doi.org/10.1520/JTE20170690.
- Mu, W.Q., Wang, D.Y., Li, L.C., Yang, T.H., Feng, Q.B., Wang, S.X. and Xiao, F.K. (2021), "Cement flow in interaction rock fractures and its corresponding new construction process in slope engineering", Constr. Build. Mater., 303(11), 124533. https://doi.org/10.1016/j.conbuildmat.2021.124533.
- Nam, K., Kim, J., Kwak, D., Rehman, H. and Yoo, H. (2020), "Structure damage estimation due to tunnel excavation based on indoor model test", Geomech. Eng., 21(2), 95-102. https://doi.org/10.12989/gae.2020.21.2.095.
- Parkes, D., Evans, D.J., Williamson, P. and Williams, J.D.O. (2018), "Estimating available salt volume for potential CAES development: a case study using the Northwich Halite of the Cheshire Basin", J. Energy Storage, 18, 50-61. https://doi.org/10.1016/j.est.2018.04.019.
- Roberts, L.A., Buchholz, S.A., Mellegard, K.D. and Dusterloh, U. (2015), "Cyclic loading effects on the creep and dilation of salt rock", Rock Mech. Rock Eng., 48, 2581-2590. https://doi.org/10.1007/s00603-015-0845-4.
- Taheri, S.R. and Pak, A. (2020), "Casing failure in salt rock: numerical investigation of its causes", Rock Mech. Rock Eng., 53, 3903-3918. https://doi.org/10.1007/s00603-020-02161-9.
- Yang, C.H., Wang, T.T., Li, J.J., Ma, H.L., Shi, X.L. and Daemen, J.J.K. (2016), "Feasibility analysis of using closely spaced caverns in bedded rock salt for underground gas storage: a case study", Environ. Earth Sci., 75, 1138. https://doi.org/10.1007/s12665-016-5944-3
- Zhang, Q.Y., Duan, K., Jiao, Y.Y. and Xiang, W. (2017), "Physical model test and numerical simulation for the stability analysis of deep gas storage cavern group located in bedded rock salt formation", Int. J. Rock Mech. Min. Sci., 94, 43-54. https://doi.org/10.1016/j.ijrmms.2017.02.015.
- Yin, H.W., Yang, C.H., Ma, H.L., Shi, X.L., Li, H.R. and Han, Y. (2020), "Stability evaluation of underground gas storage salt caverns with micro-leakage interlayer in bedded rock salt of Jintan, China", Acta Geotech., 15, 549-563. https://doi.org/10.1007/s11440-019-00901-y.
- Wang, T.T., Ma, H.L., Yang, C.H., Shi, X.L. and Daemen, J.J.K. (2015), "Gas seepage around bedded salt cavern gas storage", J. Nat. Gas Sci. Eng., 26, 61-71. https://doi.org/10.1016/j.jngse.2015.05.031.
- Tian, Z.C., Tang, C.A., Liu, Y.J. and Tang, Y.B. (2020), "Zonal disintegration test of deep tunnel under plane strain conditions", Int. J. Coal Sci. Technol., 7, 337-349. https://doi.org/10.1007/s40789-020-00319-y.
- Zhang, S.K., Lu, L., Wang, Z.M. and Wang, S.D. (2021), "A physical model study of surrounding rock failure near a fault under the influence of footwall coal mining", Int. J. Coal Sci. Technol., 8, 626-640. https://doi.org/10.1007/s40789-020-00380-7.