DOI QR코드

DOI QR Code

A Study on the Manufacture of Gas Insulated Switchgear Spacer Using APG Molding Process

APG 주형방식을 이용한 가스절연개폐기용 절연 스페이서 제작에 관한 연구

  • Lee, Chanyong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Bae, Jaesung (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Cho, Han-Gu (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lee, Sangmook (Division of Chemical Engineering, Dankook University) ;
  • Lee, Jaehyeong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 이찬용 (성균관대학교 전자전기컴퓨터공학과) ;
  • 배재성 (성균관대학교 전자전기컴퓨터공학과) ;
  • 조한구 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이상묵 (단국대학교 화학공학과) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과)
  • Received : 2022.01.18
  • Accepted : 2022.04.27
  • Published : 2022.07.01

Abstract

The gas insulation switchgear, which is a device for protecting a power system, cannot be supported by the insulation gas itself in a charge unit stored in a metal container. Therefore, molding technology is required to manufacture a gas insulation switch spacer. The APG method injection molding simulation was performed by applying the variables obtained through the physical properties of an epoxy composite used for manufacturing an insulating spacer to a moldflow software. After varying the temperature conditions of heater in the simulation, the thermal characteristics and the degree of hardening of the spacer were analyzed, based on which the optimum process conditions are presented.

Keywords

Acknowledgement

이 연구는 2022년도 산업통상자원부(MOTIE) 및 산업기술평가관리원(KEIT) 연구비 지원을 받아 수행한 연구입니다('20010965').

References

  1. Y.S. Lee, 2013, Bulletin of the Korean Institute of Electrical and Electronic Material Engineers, 26, 9.
  2. G. M. Kwon, S. K. Lee, M. C. Kang, K. S. Jeong, and K. H. Kim, Proc. 46th The Korean Institute of Electrical Engineers Summer Conference, (KIEE, Muju, 2015) p. 1181.
  3. J. J. Soh and P. J. Kim, Proc. the Korean Institute of Electrical and Electronic Material Engineers Conference (KIEEME, 2006), p. 240.
  4. H. J. Kwon, H. J. Park, E. J. Lee, S. M. Ku, S. H. Kim, and K. Y. Lee, Compos. Res., 31, 30 (2018). [DOI: https://doi.org/10.7234/composres.2018.31.1.030]
  5. D. Abliz, B. Finke, A. Kwade, C. Schilde, and G. Ziegmann, Acting Principles of Nano-Scaled Matrix Additives for Composite Structures (Eds. M. Sinapius and G. Ziegmann) (Springer, New York, 2021) p. 267. [DOI: https://link.springer.com/content/pdf/10.1007/978-3-030-68523-2.pdf]
  6. C. Leistner, S. Hartmann, D. Abliz, and G. Ziegmann, Continuum Mech. Thermodyn., 32, 327 (2020). [DOI: https://doi.org/10.1007/s00161-018-0708-9]
  7. N. T. Tran and M. Gehde, Polym. Test., 73, 284 (2019). [DOI: https://doi.org/10.1016/j.polymertesting.2018.11.042]
  8. J. Bae, W. Lee, H. Jee, B. Hong, and J. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 426 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.6.4]
  9. Y. G. Hong and S. M. Lee, Polym. Korea, 45, 940 (2021). [DOI: http://doi.org/10.7317/pk.2021.45.6.940]