References
- Diaz Vivancos, P., Wolff, T., Markovic, J., Pallardo, F. V. and Foyer, C. H. 2010. A nuclear glutathione cycle within the cell cycle. Biochem. J. 431, 169-178. https://doi.org/10.1042/BJ20100409
- Pastore, A., Federici, G., Bertini, E. and Piemonte, F. 2003. Analysis of glutathione: Implication in redox and detoxification. Clin. Chim. Acta 333, 19-39. https://doi.org/10.1016/S0009-8981(03)00200-6
- Monostori, P., Wittmann, G., Karg, E. and Tri, S. 2009. Determination of glutathione and glutathione disulfide in biological samples: An in-depth review. J. Chromatogr. B 877, 3331-3346. https://doi.org/10.1016/j.jchromb.2009.06.016
- Perricone, C., De Carolis, C. and Perricone, R. 2009. Glutathione: A key player in autoimmunity. Autoimmun. Rev. 8, 697-701. https://doi.org/10.1016/j.autrev.2009.02.020
- Kerksick, C. and Willoughby, D. 2005. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J. Int. Soc. Sports Nutr. 2, 38-44. https://doi.org/10.1186/1550-2783-2-2-38
- Filomeni, G., Rotilio, G. and Ciriolo, M. R. 2005. Disulfide relays and phosphorylative cascades: Partners in redoxmediated signaling pathways. Cell Death Dier. 12, 1555-1563. https://doi.org/10.1038/sj.cdd.4401754
- Lei, C. X., Xie, Y. J., Li, S. J., Jiang, P., Du, J. X. and Tian, J. J. 2002. Fabp4 contributes toward regulating inflammatory gene expression and oxidative stress in Ctenopharyngodon idella. Comp. Biochem. Physiol. B Bioche m. Mol. Biol. 259, 110715.
- Li, D., Li, Z., Zhang, T., Peng, B., Zhang, Y., Sun, H. and Wang, S. 2021. 2-amino-3-methylimidazo[4,5-f]quinoline triggering liver damage by inhibiting autophagy and inducing endoplasmic reticulum stress in zebrafish (Danio rerio). Toxins (Basel) 13, 826. https://doi.org/10.3390/toxins13110826
- Han, J., Dong, J., Zhang, R., Zhang, X., Chen, M., Fan, X., Li, M., Li, J., Zhu, J., Shang, J. and Yue, Y. 2021. Dendrobium catenatum Lindl. water extracts attenuate atherosclerosis. Mediators Inflamm. 2021, 9951946.
- Wang, Y., Zhao, H., Liu, Y., Nie, X. and Xing, M. 2020. Zinc exerts its renal protection effect on arsenic-exposed common carp: A signaling network comprising Nrf2, NF-κB and MAPK pathways. Fish Shellfish Immunol. 104, 383-390. https://doi.org/10.1016/j.fsi.2020.06.031
- Liu, J., Pan, M., Liu, Y., Huang, D., Luo, K., Wu, Z., Zhang, W. and Mai, K. 2022. Taurine alleviates endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in the muscle cells of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 123, 358-368. https://doi.org/10.1016/j.fsi.2022.03.021
- Klintmalm, G. B. 1994. FK 506: An update. Clin. Transplant. 8, 207-210.
- Wallemacq, P. E. and Reding, R. 1993. FK506 (tacrolimus), a novel immunosuppressant in organ transplantation: Clinical, biomedical, and analytical aspects. Clin. Chem. 39, 2219-2228. https://doi.org/10.1093/clinchem/39.11.2219
- Kitamura, N. and Kaminuma, O. 2021. Isoform-selective NFAT inhibitor: Potential usefulness and development. Int. J. Mol. Sci. 22, 2725. https://doi.org/10.3390/ijms22052725
- Bonner, J. M. and Boulianne, G. L. 2017. Diverse structures, functions and uses of FK506 binding proteins. Cell. Signal. 38, 97-105. https://doi.org/10.1016/j.cellsig.2017.06.013
- Wimmer, C. D., Angele, M. K., Schwarz, B., Pratschke, S., Rentsch, A. M., Khandoga, Guba, M., Jauch, K. W., Bruns, C. and Graeb, C. 2013. Impact of cyclosporine versus tacrolimus on the incidence of de novo malignancy following liver transplantation: A single center experience with 609 patients. Transpl. Int. 26, 999-1006. https://doi.org/10.1111/tri.12165
- Sommerer, C. and Giese, T. 2016. Nuclear factor of activated T cells-regulated gene expression as predictive biomarker of personal response to calcineurin inhibitors. Ther. Drug Monit. 38, S50-56. https://doi.org/10.1097/FTD.0000000000000234
- Noble, J., Terrec, F., Malvezzi, P. and Rostaing, L. 2021. Adverse effects of immunosuppression after liver transplantation. Best Pract. Res. Clin. Gastroenterol. 54-55, 101762. https://doi.org/10.1016/j.bpg.2021.101762
- Amorese, G., Lombardo, C., Tudisco, A., Iacopi, S., Men onna, F., Marchetti, P., Vistoli, F. and Boggi, U. 2020. Induction and immunosuppressive management of pancreas transplant recipients. Curr. Pharm. Des. 26, 3425-3439. https://doi.org/10.2174/1381612826666200430111620
- Hissong, E., Mostyka, M. and Yantiss, R. K. 2022. Histologic features of tacrolimus-induced colonic injury. Am. J. Surg. Pathol. 46, 118-123. https://doi.org/10.1097/PAS.0000000000001761
- Kim, H. S., Lim, S. W., Jin, L., Jin, J., Chung, B. H. and Yang, C. W. 2017. The protective effect of febuxostat on chronic tacrolimus-induced nephrotoxicity in rats. Nephron 135, 61-71. https://doi.org/10.1159/000449289
- Park, C., Kwon, D. H., Hwang, S. J., Han, M. H., Jeong, J. W., Hong, S. H., Cha, H. J., Hong, S. H., Kim, G. Y., Lee, H. J., Kim, S., Kim, H. S. and Choi, Y. H. 2019. Protective effects of nargenicin A1 against tacrolimus-induced oxidative stress in hirame natural embryo cells. Int. J. Environ. Res. Public Health 16, 1044. https://doi.org/10.3390/ijerph16061044
- Liu, G., Fan, G., Guo, G., Kang, W., Wang, D., Xu, B. and Zhao, J. 2017. FK506 attenuates the inflammation in rat spinal cord injury by inhibiting the activation of NF-κB in microglia cells. Cell. Mol. Neurobiol. 37, 843-855. https://doi.org/10.1007/s10571-016-0422-8
- Yu, Y., Zhong, J., Peng, L., Wang, B., Li, S., Huang, H., Deng, Y., Zhang, H., Yang, R., Wang, C. and Yuan, J. 2017. Tacrolimus downregulates inflammation by regulating pro-/anti-inflammatory responses in LPS-induced keratitis. Mol. Med. Rep. 16, 5855-5862. https://doi.org/10.3892/mmr.2017.7353
- Wang, L., Chang, J. H., Paik, S. Y., Tang, Y., Eisner, W. and Spurney, R. F. 2011. Calcineurin (CN) activation promotes apoptosis of glomerular podocytes both in vitro and in vivo. Mol. Endocrinol. 25, 1376-1386. https://doi.org/10.1210/me.2011-0029
- Gurkan, A., Afacan, B., Emingil, G., Toz, H., Baskesen, A. and Atilla, G. 2008. Gingival crevicular fluid transforming growth factor-β1 in cyclosporine and tacrolimus treated renal transplant patients without gingival overgrowth. Arch. Oral Biol. 53, 723-728. https://doi.org/10.1016/j.archoralbio.2008.02.003
- Lim, S. W., Jin, L., Luo, K., Jin, J. and Yang, C. W. 2017. Ginseng extract reduces tacrolimus-induced oxidative stress by modulating autophagy in pancreatic β cells. Lab. Investig. 97, 1271-1281. https://doi.org/10.1038/labinvest.2017.75
- Jeon, S. H., Park, H. M., Kim, S. J., Lee, M. Y., Kim, G. B., Rahman, M. M., Woo, J. N., Kim, I. S., Kim, J. S. and Kang, H. S. 2010. Taurine reduces FK506-induced generation of ROS and activation of JNK and Bax in Madin Darby canine kidney cells. Hum. Exp. Toxicol. 2010, 29, 627-633. https://doi.org/10.1177/0960327109359019
- Kwon, D. H., Cha, H. J., Lee, H., Hong, S. H., Park, C., Park, S. H., Kim, G. Y., Kim, S., Kim, H. S., Hwang, H. J. and Choi, Y. H. 2019. Protective effect of glutathione against oxidative stress-induced cytotoxicity in RAW 264.7 macrophages through activating the nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway. Antioxidants (Basel) 8, 82. https://doi.org/10.3390/antiox8040082
- Ding, J., Jin, J., Lei, Y.N., Cui, S., Li, H. Y., Zheng, H. L., Piao, S. G., Jiang, Y. J., Xuan, M. Y., Jin, J. Z., Jin, Y. S., Lee, J. P., Chung B. H., Choi, B. S., Yang, C. W. and Li, C. 2022. Exogenous pancreatic kininogenase protects against tacrolimus-induced renal injury by inhibiting PI3K/AKT signaling: The role of bradykinin receptors. Int. Immunopharmacol. 105, 108547. https://doi.org/10.1016/j.intimp.2022.108547
- Jiang, Y. J., Cui, S., Luo, K., Ding, J., Nan, Q. Y., Piao, S. G., Xuan, M. Y., Zheng, H. L., Jin, Y. J., Jin, J. Z., Lee, J. P., Chung, B. H., Choi, B. S., Yang, C. W. and Li, C. 2021. Nicotine exacerbates tacrolimus-induce d renal injury by programmed cell death. Korean J. Inter n. Med. 36, 1437-1449. https://doi.org/10.3904/kjim.2021.326
- Xu, X. S., Shao, N., Duan, X. T., Zhang, X. and Zhang, Y. F. 2018. Tacrolimus alleviates Ox-LDL damage through inducing vascular endothelial autophagy. Eur. Rev. Med. Pharmacol. Sci. 22, 3199-3206.
- Babaeenezhad, E., Hadipour Moradi, F., Rahimi Monfared, S., Fattahi, M. D., Nasri, M., Amini, A., Dezfoulian, O. and Ahmadvand, H. 2021. D-limonene alleviates acute kidney injury following gentamicin administration in rats: Role of NF-κB pathway, mitochondrial apoptosis, oxidative stress, and PCNA. Oxid. Med. Cell. Longev. 2021, 6670007.
- Ren, J., Li, S., Wang, C., Hao, Y., Liu, Z., Ma, Y., Liu, G. and Dai, Y. 2021. Glutathione protects against the meiotic defects of ovine oocytes induced by arsenic exposure via the inhibition of mitochondrial dysfunctions. Ecotoxicol. Environ. Saf. 230, 113135.
- Jie, J., Li, W., Wang, G. and Xu, X. 2021. FK506 ameliorates osteoporosis caused by osteoblast apoptosis via suppressing the activated CaN/NFAT pathway during oxidative stress. Inflamm. Res. 70, 789-797. https://doi.org/10.1007/s00011-021-01452-3
- Kowalczyk, P., Sulejczak, D., Kleczkowska, P., Bukowska-Osko, I., Kucia, M., Popiel, M., Wietrak, E., Kramkowski, K., Wrzosek, K. and Kaczynska, K. 2021. Mitochondrial oxidative stress-A causative factor and therapeutic target in many diseases. Int. J. Mol. Sci. 22, 13384. https://doi.org/10.3390/ijms222413384
- Shi, T. and Dansen, T. B. 2020. Reactive oxygen species induced p53 activation: DNA damage, redox signaling, or both? Antioxid. Redox Signal. 33, 839-859. https://doi.org/10.1089/ars.2020.8074
- Ferjani, H., Timoumi, R., Amara, I., Abid, S., Achour, A., Bacha, H. and Boussema-Ayed, I. 2017. Beneficial effects of mycophenolate mofetil on cardiotoxicity induced by tacrolimus in wistar rats. Exp. Biol. Med. (Maywood) 242, 448-455. https://doi.org/10.1177/1535370215616709
- Cordelli, E., Bignami, M. and Pacchierotti, F. 2021. Comet assay: a versatile but complex tool in genotoxicity testing. Toxicol. Res. (Camb) 10, 68-78. https://doi.org/10.1093/toxres/tfaa093
- Liu, Z., Ren, Z., Zhang, J., Chuang, C. C., Kandaswamy, E., Zhou, T. and Zuo, L. 2018. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 9, 477. https://doi.org/10.3389/fphys.2018.00477
- Aksentijevich, M., Lateef, S. S., Anzenberg, P., Dey, A. K. and Mehta, N. N. 2020. Chronic inflammation, cardiometabolic diseases and effects of treatment: psoriasis as a human model. Trends Cardiovasc. Med. 30, 472-478. https://doi.org/10.1016/j.tcm.2019.11.001
- Picca, A., Calvani, R., Coelho-Junior, H. J. and Marzetti, E. 2021. Cell death and inflammation: The role of mitochondria in health and disease. Cells 10, 537. https://doi.org/10.3390/cells10030537
- Mailey, B., O'Shea, G., Romanelli, M. and West, B. 2021. Systemic imunosuppression for prevention of recurrent tendon adhesions. Plast. Reconstr. Surg. Glob. Open 9, e3834. https://doi.org/10.1097/GOX.0000000000003834
- Meyer, N., Brodowski, L., von Kaisenberg, C., SchroderHeurich, B. and von Versen-Hoynck, F. 2021. Cyclosporine A and tacrolimus induce functional impairment and inflammatory reactions in endothelial progenitor cells. Int. J. Mol. Sci. 22, 9696. https://doi.org/10.3390/ijms22189696
- Wang, F., Wei, F., Liu, H., Wang, X., Wang, W., Ouyang, Y., Liu, J., Chen, D. and Zang, Y. 2021. Association of the IL-6 Rs1800796 SNP with concentration/dose ratios of tacrolimus and donor liver function after transplantation. Immunol. Invest. 50, 939-948. https://doi.org/10.1080/08820139.2020.1793775
- Ibrahim, S. A., Eltahawy, N. F., Abdalla, A. M. and Khalaf, H. M. 2021. Protective effects of selenium in tacrolimus-induced lung toxicity: potential role of hemeoxygenase 1. Can. J. Physiol. Pharmacol. 99, 1069-1078. https://doi.org/10.1139/cjpp-2020-0547
- Soufli, I., Toumi, R., Rafa, H. and Touil-Boukoffa, C. 2016. Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J. Gastrointest. Pharmacol. Ther. 7, 353-360. https://doi.org/10.4292/wjgpt.v7.i3.353
- Aleem, D. and Tohid, H. 2018 Pro-inflammatory cytokines, biomarkers, genetics and the immune system: a mechanistic approach of depression and psoriasis. Rev. Colomb. Psiquiatr. 47, 177-186. https://doi.org/10.1016/j.rcp.2017.03.002