DOI QR코드

DOI QR Code

Sentinel-2 위성영상을 활용하여 국가하천망 제작을 위한 자동화 기술 개발 -서울시 한강을 사례로-

Development of the Automatic Method for Detecting the National River Networks Using the Sentinel-2 Satellite Imagery -A Case Study for Han River, Seoul-

  • 김선우 ((주)지오씨엔아이 공간정보기술연구소) ;
  • 권용하 ((주)지오씨엔아이 공간정보솔루션센터) ;
  • 정연인 (계명대학교 토목공학과) ;
  • 정윤재 ((주)지오씨엔아이 공간정보기술연구소)
  • 투고 : 2022.05.10
  • 심사 : 2022.06.16
  • 발행 : 2022.06.30

초록

하천망은 하천 관리에 있어서 필수적인 지형특성 중 하나이다. 기존에 현장조사를 통해 구축되었던 하천망은 최근에 원격탐사 자료를 활용하여 효율적으로 구축되기 시작하였다. 교량 등 장애물이 많은 도시 하천망의 경우, 하천 내 장애물 제거에 어려움이 있어 온전한 하천망을 구축한 사례는 드물다. 본 연구는 Sentinel-2 위성영상을 활용하여 도시 내 하천에 존재하는 장애물을 제거하고 경계선이 보전된 온전한 하천망을 자동으로 추출하는 기술을 개발하였다. 우선 Sentinel-2 위성영상의 다중분광 밴드를 활용하여 정규수분지수 영상을 제작하고 수체와 그 외 지역을 구분할 수 있는 이진화 영상을 제작하였다. 그리고 모폴로지 연산을 이진화 영상에 적용하여 장애물이 제거되고 경계선이 보전된 온전한 하천망을 추출하였다. 본 연구에서 개발한 기술을 서울시 한강에 적용한 결과, 경계선은 보존되고 교량 등 장애물이 제거된 온전한 하천망을 추출할 수 있었다.

The river network is one of the essential topographical characteristics in river management. The river network which as previously constructed by the ground surveying method has recently begun to be efficiently constructed using the remote sensing datasets. Since it is difficult to remove these obstacles such as bridges in the urban rivers, it is rare to construct the urban river networks with the various obstacles. In this study, the Sentinel-2 satellite imagery was used to develop the automatic method for detecting the urban river networks without the obstacles and with the preserved boundaries as follows. First, the normalized difference water index image was generated using the multispectral bands of the given Sentinel-2 satellite imagery, and the binary image that could classify the water body and other regions was generated. Next, the morphological operations were employed for detecting the complete river networks with the obstacles removed and the boundaries preserved. As a result of applying the proposed methodology to Han River in Seoul, the complete river networks with the obstacles removed and the boundaries preserved were well constructed.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 물관리연구사업의 지원을 받아 연구되었습니다.(21AWMP-B121100-06)

참고문헌

  1. Ahn. S.S. and M.H. Jo. 1999. Analysis of stream physiographic characteristics of river basin by using GIS. Journal of the Korean Association of Geographic Information Studies 2(3):23-34.
  2. Chen, H., Q. Liang, Z. Liang, Y. Liu and T. Ren. 2020. Extraction of connected river networks from multi-temporal remote sensing imagery using a path tracking technique. Remote Sensing of Environment 246(6402):111868. https://doi.org/10.1016/j.rse.2020.111868
  3. Choung, Y.J. and M.H. Jo. 2016. Monitoring water resource changes using multitemporal Landsat imagery taken in Changnyeong, South Korea. Procedia Engineering 154(2016):348-352. https://doi.org/10.1016/j.proeng.2016.07.489
  4. Choung. Y.J., K.S. Kim,, I.S. Park and Y.I. Chung. 2021. Detection of surface water bodies in Daegu using various water indices and machine learning technique based on the Landsat-8 satellite image. Journal of the Korean Association of Geographic Information Studies 24(1):1-11. https://doi.org/10.11108/KAGIS.2021.24.1.001
  5. Choung, Y.J., H.C. Park and M. H. Jo. 2012. A Study on mapping 3-D river boundary using the spatial information datasets. Journal of the Korean Association of Geographic Information Studies 15(1): 87-98. https://doi.org/10.11108/KAGIS.2012.15.1.087
  6. Fan, Z., J. Hou, Q. Zang, Y. Chen and F. Yan. 2022. River segmentation of remote sensing images based on composite attention network. Complexity 2022:7750281.
  7. Gonzalez, R. and R. Woods. 2017. Digital Image Processing: 4th Edition. Pearson, London, United Kingdom. 1192pp.
  8. Kang. B.S., S.I. Lee, J.H. Kim and J.Y. Seo. 2017. Technique for estimating hydrological volume in unmeasured areas in North Korea using remote sensing. Water and Future 50(5):20-28.
  9. Kim. D.S and Y.W. Lee. 2020. Detection of landslide-damaged areas using Sentinel-2 image and ISODATA. Journal of the Korean Association of Geographic Information Studies 23(4):253-265. https://doi.org/10.11108/KAGIS.2020.23.4.253
  10. Kim. K.S, G.S. Lee and Y.J. Choung. 2020. Analysis on the changes of remote sensing indices on each land cover before and after heavy rainfall using multi-temporal Sentinel-2 satellite imagery and daily precipitation data. Journal of the Korean Association of Geographic Information Studies 23(2):70-82. https://doi.org/10.11108/KAGIS.2020.23.2.070
  11. Kim. Y.J and I.T, Yang. 2002. Analysis of flowaccumulation threshold value to extract stream network from DEM. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 20(3): 255-264.
  12. Kye. C.W, D.K, Shin., J.H. Yi and J.G. Kim. 2021. Waterbody detection from Sentinel-2 images using NDWI: A Case of Hwanggang Dam in North Korea. Korean Journal of Remote Sensing 37(5):1207-1214. https://doi.org/10.7780/KJRS.2021.37.5.1.30
  13. Li, D., B. Wu, B. Chen, C. Qin, Y. Wang, Y. Zhang and Y. Xue. 2020. Open-surface river extraction based on Sentinel-2 MSI imagery and DEM data: case study of the Upper Yellow River. Remote Sensing 12(17):2737. https://doi.org/10.3390/rs12172737
  14. Li, D., G. Wang, C. Qin and B. Wu. 2021. River extraction under bankfull discharge conditions based on Sentinel-2 imagery and DEM data. Remote Sensing 13(14):2650. https://doi.org/10.3390/rs13142650
  15. McFeeters, S.K., 1996. The use of the normalized difference water index(NDWI) in the delineation of open water features. International Journal of Remote Sensing 17(7):1425-1432. https://doi.org/10.1080/01431169608948714
  16. MathWorks. 2022. Types of Morphological Operations. https://kr.mathworks.com/help/images/morphological-dilation-and-erosion.html?lang=en (Accessed May 9, 2022).
  17. National Spatial Data Infrastructure(NSDI). 2022. Natinal River Networks. http://data.nsdi.go.kr/dataset/12608 (Accessed May 9, 2022).
  18. Park, J.S., W.H. Lee and M.H. Jo. 2016. Improving accuracy of land cover classification in river basins using Landsat-8 OLI image, vegetation index, and water index. Journal of the Korean Association of Geographic Information Studies 19(2): 98-106. https://doi.org/10.11108/KAGIS.2016.19.2.098
  19. Yu. S.K., S.K. Choi and S.W. Moon. 2002. Analysis of hydrologic chracteristics for Milyang river basin with a GIS. The Journal of GIS Association of Korea 10(1):107-122.