DOI QR코드

DOI QR Code

Effect of Pre-annealing on the Formation of Cu2ZnSn(S,Se)4 Thin Films from a Se-containing Cu/SnSe2/ZnSe2 Precursor

  • Ko, Young Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Sung Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ko, Jae Hyuck (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Byung Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Chalapathy, R.B.V. (Department of Physics, Vel Tech High Tech Dr Rangarajan Dr Sakunthla Engineering College)
  • 투고 : 2022.02.17
  • 심사 : 2022.03.24
  • 발행 : 2022.06.30

초록

A Se-containing Cu/SnSe2/ZnSe precursor was employed to introduce S to the precursor to form Cu2ZnSn(S,Se)4 (CZTSSe) film. The morphology of CZTSSe films strongly varied with two different pre-annealing environments: S and N2. The CZTSSe film with S pre-annealing showed a dense morphology with a smooth surface, while that with N2 pre-annealing showed a porous film with a plate-shaped grains on the surface. CuS and Cu2Sn(S,Se)3 phases formed during the S pre-annealing stage, while SnSe and Cu2SnSe3 phases formed during the N2 pre-annealing stage. The SnSe phase formed during N2 pre-annealing generated SnS2 phase that had plate shape and severely aggravated the morphology of CZTSSe film. The power conversion efficiency of the CZTSSe solar cell with S pre-annealing was low (1.9%) due to existence of Zn(S.Se) layer between CZTSSe and Mo substrate. The results indicated that S pre-annealing of the precursor was a promising method to achieve a good morphology for large area application.

키워드

과제정보

This work was financially supported by the Technology development program to solve climate changes of the National Research Foundation, South Korea (No. 2016M1A2A2936757) and by the Korea Institute of Energy Technology Evaluation and Planning, South Korea (No. 20163030013690).

참고문헌

  1. D. Shin, B. Saparov, D.B. Mitzi, "Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials," Adv. Energy Mater. 7(11), 1602366 (2017). https://doi.org/10.1002/aenm.201602366
  2. C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J. M. Cairney, N. J. Ekins-Daukes, Z. Hameiri, J. A. Stride, S. Chen, M. A. Green, X. Hao, "Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment," Nat. Energy, 3, 764-772 ( 2017). https://doi.org/10.1038/s41560-018-0206-0
  3. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, "Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency," Adv. Energy Mater., 4, 1301465 (2014). https://doi.org/10.1002/aenm.201301465
  4. W. Shockley, H. J. Queisser, "Detailed balance limit of efficiency of p-n Junction solar cells," J. Appl. Phys., 32, 510-519 (1961). https://doi.org/10.1063/1.1736034
  5. W. Ki, H. W. Hillhouse, "Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent," Adv. Energy Mater., 1, 732-735 (2011). https://doi.org/10.1002/aenm.201100140
  6. S. Saha, "A status review on Cu2ZnSn(S,Se)4 based thin-film solar cells," Int. J. Photoenergy, 2020, ID 3036413 (2020).
  7. H. Yoo, J. S. Jang, S. W. Shin, J. Lee, J. Kim, D. M. Kim, I. J. Lee, B. H. Lee, J. Park, J. H. Kim, "Influence of the reaction pathway on the defect formation in a Cu2ZnSnSe4 thin film," ACS Appl. Mater. Interfaces, 13, 13425-13433 (2021). https://doi.org/10.1021/acsami.1c01307
  8. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, Y. Zhang, "Tunable band gap Cu2ZnSnS4xSe4(1-x) nanocrystals: experimental and firstprinciples calculations," Cryst. Eng. Comm. 13, 2222-2226 (2011). https://doi.org/10.1039/c0ce00779j
  9. T. K. Todorov, K. B. Reuter, D. B. Mitzi. High-efficiency solar cell with earth-abundant liquid-processed absorber, Adv. Mater., 22, E156-E159 (2010). https://doi.org/10.1002/adma.200904155
  10. S. Ji, T. Shi, X. Qui, J. Zhang, G. Xu, C. Chen, Z. Jiang, C. Ye, "A route to phase controllable Cu2ZnSn(S1-xSex)4 nanocrystals with tunable energy bands," Sci. Rep., 3, 2733 (2013). https://doi.org/10.1038/srep02733
  11. B. Shin, O. Gubawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber," Prog. Photovolt: Res. Appl., 21, 72-76 (2013). https://doi.org/10.1002/pip.1174
  12. S. W. Shin, I. Y. Kim, K. V. Gurav, C. H. Jeong, J. H. Yun, P. S. Patil, J. Y. Lee, J. H. Kim, "Band gap tunable and improved microstructure characteristics of Cu2ZnSn(S1-xSex)4 thin films by annealing under atmosphere containing S and Se," Curr. Appl. Phys., 13, 1837-1843 (2013). https://doi.org/10.1016/j.cap.2013.06.022
  13. R. B. V. Chalapathy, G. S. Jung, B. T. Ahn, "Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells," Sol. Energy Mater. Sol. Cells, 95, 3216-3221 (2011). https://doi.org/10.1016/j.solmat.2011.07.017
  14. D. H. Son, S. H. Kim, S. Y. Kim, Y. I. Kim, J. H. Sim, S. N. Park, D. H. Jeon, D. K. Hwang, S. J. Sung, J. K. Kang, K. J. Yang, D. H. Kim, "Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device," J. Mater. Chem. A, 7, 25279-25289 (2019). https://doi.org/10.1039/c9ta08310c
  15. K. J. Yang, D. H. Son, S. J. Sung, J. H. Sim, Y. I. Kim, S. N. Park, D. H. Jeon, J. S. Kim, D. K. Hwang, C. W. Jeon, D. Nam, H. Cheong, J. K. Kang, D. H. Kim, "A band-gap-graded CZTSSe solar cell with 12.3% efficiency," J Mater. Chem. A, 4 10151-10158 (2016). https://doi.org/10.1039/C6TA01558A
  16. X. Zeng, K. F. Tai, T. Zhang, C. W. J. Ho, X. Chen, A. Huan, T. C. Sum, L. H. Wong, "Cu2ZnSn(S, Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization," Sol. Energy Mater. Sol. Cells, 124, 55-60 (2014). https://doi.org/10.1016/j.solmat.2014.01.029
  17. M. He, K. Sun, M. P. Suryawanshi, J. Li, X. Hao, Interface engineering of p-n heterojunction for kesterite photovoltaics: A progress review," J. Energy Chem., 60, 1-8 (2021). https://doi.org/10.1016/j.jechem.2020.12.019
  18. M. Ravindrian, C. Praveenkumar, Status review and the future prospects of CZTS based solar cell - A novel approach on the device structure and material modeling for CZTS based photovoltaic device, Renew. Sust. Energy Rev., 94, 317-329 (2018). https://doi.org/10.1016/j.rser.2018.06.008
  19. G. Y. Kim, A. R. Jeong, J. R. Kim, W. Jo, D. H. Kim, D. K. Hwang, S. J. Sung, J. K. Kang, "Effect of selenization on local current and surface potential of sputtered Cu2ZnSn(S,Se)4 thinfilms with 8% conversion efficiency," IEEE 39th Photovoltaic Specialist Conference, Tampa Bay, FL, 383-385, (2013).
  20. R. Munir, G. S. Jung, Y. M. Ko, B. T. Ahn, "Characterization of Cu2ZnSnSe4 thin films selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe stacks," Kor. J. Mater. Res., 23, 183-189 (2013). https://doi.org/10.3740/MRSK.2013.23.3.183
  21. D. Lu, C. Yue, S. Luo, Z. Li, W. Xue, X. Qi, J. Zhong, "Phase controllable synthesis of SnSe and SnSe2 films with tunable photoresponse properties," Appl. Surf. Sci., 541, 148615 (2021). https://doi.org/10.1016/j.apsusc.2020.148615
  22. P. A. Fernandes, P. M. Salome, A. F. da Cunha, "A study of ternary Cu2SnS and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors," J. Phys. D: Appl. Phys. 43, 215403 (2010). https://doi.org/10.1088/0022-3727/43/21/215403
  23. B. Mineceva-Sukarova, M. Najdoski, I. Grozdanov, C. J. Chunilall, "Raman spectra of thin solid films of some metal sulphides," J. Mol. Struct., 410-411, 267-270 (1997). https://doi.org/10.1016/S0022-2860(96)09713-X
  24. P. A. Fernandes, P. M. P. Salomea, A. F. da Cunha, "Study of polycrystalline Cu2ZnSnS4 films by Raman scattering," J. Alloy Comp., 509, 7600-7606 (2011). https://doi.org/10.1016/j.jallcom.2011.04.097
  25. D. Nam, A. S. Opanasyuk, P. V. Koval, A. G. Ponomarev, A. R. Jeong, G. Y. Kim, W. Jo, H. Cheong, "Composition variations in Cu2ZnSnSe4 thin films analyzed by x-ray diffraction, energy dispersive x-ray spectroscopy, particle induced x-ray emission, photoluminescence, and Raman spectroscopy," Thin Solid Films, 562, 109-113 (2014). https://doi.org/10.1016/j.tsf.2014.03.079
  26. K. M. Kim, H. Tampo, H. Shinata, S. Niki, "Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications," Thin Solid Films, 536, 111-114 (2013). https://doi.org/10.1016/j.tsf.2013.03.119
  27. T. Tanaka, T. Sueishi, K. Saito, Q, Cui, M. Nishio, K. M. Yu, W. Walukeiwicz, "Existence and removal of Cu2Se second phase in co-evaporated Cu2ZnSnSe4 thin films," J. Appl. Phys. 111, 053522 (2012). https://doi.org/10.1063/1.3691964
  28. M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, "Photoluminescence and Raman study of Cu2ZnSn (SexS1-x)4 monograins for photovoltaic applications," Thin Solid Films, 519, 7403-7406 (2011). https://doi.org/10.1016/j.tsf.2010.12.099
  29. D. G. Mead and J. C. Irwin, "Raman spectra of SnS2 and SnSe2," Solid State Commun., 20, 885-887 (1976). https://doi.org/10.1016/0038-1098(76)91297-7