DOI QR코드

DOI QR Code

Se Incorporation in VTD-SnS by RTA and Its Influence on Performance of Thin Film Solar Cells

  • Yadav, Rahul Kumar (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Kim, Yong Tae (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Pawar, Pravin S. (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Heo, Jaeyeong (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University)
  • 투고 : 2022.02.14
  • 심사 : 2022.04.04
  • 발행 : 2022.06.30

초록

Planner configuration thin film solar cells (TFSCs) with SnS/CdS heterojunction performed a lower short-circuit current (JSC). In this study, we have demonstrated a path to overcome deficiency in JSC by the incorporation of Se in the SnS absorber. We carried out the incorporation of Se in VTD grown SnS absorber by rapid thermal annealing (RTA). The diffusion of Se is mostly governed by RTA temperature (TRTA), also it is observed that film structure changes from cube-like to plate-like structure with TRTA. The maximum JSC of 23.1 mA cm-2 was observed for 400℃ with an open-circuit voltage (VOC) of 0.140 V for the same temperature. The highest performance of 2.21% with JSC of 18.6 mA cm-2, VOC of 0.290 V, and fill factor (FF) of 40.9% is observed for a TRTA of 300℃. In the end, we compare the device performance of Se- incorporated SnS absorber with pristine SnS absorber material, increment in JSC is approximately 80% while a loss in VOC of about 20% has been observed.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C2006532).

참고문헌

  1. A.M. Bagher, M.M.A. Vahid, M. Mohsen, American Journal of optics and Photonics 3, 94-113 (2015). https://doi.org/10.11648/j.ajop.20150305.17
  2. P. Spinelli, V. Ferry, J. Van De Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, A. Polman, J. Opt. 14, 024002 (2012). https://doi.org/10.1088/2040-8978/14/2/024002
  3. L. Kranz, S. Buecheler, A.N. Tiwari, Sol. Energy Mater. Sol. Cells 119, 278-280 (2013). https://doi.org/10.1016/j.solmat.2013.08.028
  4. J. Ramanujam, D.M. Bishop, T.K. Todorov, O. Gunawan, J. Rath, R. Nekovei, E. Artegiani, A. Romeo, Prog. Mater. Sci. 110, 100619 (2020). https://doi.org/10.1016/j.pmatsci.2019.100619
  5. S. Yadav, S.R. Yashas, H.P. Shivaraju, Environ. Chem. Lett. 19, 3683-3700 (2021). https://doi.org/10.1007/s10311-021-01269-w
  6. D. Lilhare, A. Khare, Opto-Electron. Rev. 28 (2020).
  7. D.G. Moon, S. Rehan, D.H. Yeon, S.M. Lee, S.J. Park, S. Ahn, Y.S. Cho, Sol. Energy Mater. Sol. Cells 200, 109963 (2019). https://doi.org/10.1016/j.solmat.2019.109963
  8. T. Todorov, O. Gunawan, S.J. Chey, T.G. De Monsabert, A. Prabhakar, D.B. Mitzi, Thin solid films 519, 7378-7381 (2011). https://doi.org/10.1016/j.tsf.2010.12.225
  9. U.A. Shah, S. Chen, G.M.G. Khalaf, Z. Jin, H. Song, Adv. Funct. Mater. 31, 2100265 (2021). https://doi.org/10.1002/adfm.202100265
  10. P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Adv. Energy Mater. 4, 1400496 (2014). https://doi.org/10.1002/aenm.201400496
  11. S. Gedi, V.R.M. Reddy, S. Alhammadi, P.R. Guddeti, T.R.R. Kotte, C. Park, W.K. Kim, Sol. Energy 184, 305-314 (2019). https://doi.org/10.1016/j.solener.2019.04.010
  12. L.A. Burton, A. Walsh, Appl. Phys. Lett. 102, 132111 (2013). https://doi.org/10.1063/1.4801313
  13. P. Nair, A. Garcia-Angelmo, M. Nair, Phys. Status Solidi A 213, 170-177 (2016). https://doi.org/10.1002/pssa.201532426
  14. J.Y. Cho, S. Kim, R. Nandi, J. Jang, H.-S. Yun, E. Enkhbayar, J.H. Kim, D.-K. Lee, C.-H. Chung, J. Kim, J. Mater. Chem. A 8, 20658-20665 (2020). https://doi.org/10.1039/d0ta06937j
  15. H.S. Yun, B.W. Park, Y.C. Choi, J. Im, T.J. Shin, S.I. Seok, Adv. Energy Mater. 9, 1901343 (2019). https://doi.org/10.1002/aenm.201901343
  16. K.R. Reddy, N.K. Reddy, R. Miles, Sol. Energy Mater. Sol. Cells 90, 3041-3046 (2006). https://doi.org/10.1016/j.solmat.2006.06.012
  17. J.A. Andrade-Arvizu, M. Courel-Piedrahita, O. Vigil-Galan, J. Mater. Sci.: Mater. Electron. 26, 4541-4556 (2015). https://doi.org/10.1007/s10854-015-3050-z
  18. D. Lim, H. Suh, M. Suryawanshi, G.Y. Song, J.Y. Cho, J.H. Kim, J.H. Jang, C.W. Jeon, A. Cho, S. Ahn, Adv. Energy Mater. 8. 1702605 (2018). https://doi.org/10.1002/aenm.201702605
  19. V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R.E. Brandt, J.R. Poindexter, Y.S. Lee, L. Sun, A. Polizzotti, H.H. Park, Adv. Mater. 26, 7488-7492 (2014). https://doi.org/10.1002/adma.201402219
  20. Y. Wang, J. Li, C. Xue, Y. Zhang, G. Jiang, W. Liu, C. Zhu, Mater. Lett. 178, 104-106 (2016). https://doi.org/10.1016/j.matlet.2016.04.140
  21. S. Di Mare, D. Menossi, A. Salavei, E. Artegiani, F. Piccinelli, A. Kumar, G. Mariotto, A. Romeo, Coatings 7, 34 (2017). https://doi.org/10.3390/coatings7020034
  22. R.R. Khanal, A.B. Phillips, Z. Song, Y. Xie, H.P. Mahabaduge, M.D. Dorogi, S. Zafar, G.T. Faykosh, M.J. Heben, Sol. Energy Mater. Sol. Cells 157, 35-41 (2016). https://doi.org/10.1016/j.solmat.2016.05.001
  23. R.K. Yadav, P.S. Pawar, K.E. Neerugatti, R. Nandi, J.Y. Cho, J. Heo, Curr. Appl. Phys. 31, 232-238 (2021). https://doi.org/10.1016/j.cap.2021.09.009
  24. O. Oklobia, G. Kartopu, S. Jones, P. Siderfin, B. Grew, H.K.H. Lee, W. Tsoi, A. Abbas, J.M. Walls, D.L. Mcgott, Sol. Energy Mater. Sol. Cells 231, 111325 (2021). https://doi.org/10.1016/j.solmat.2021.111325
  25. U.C. Matur, N. Baydogan, J. Nanoelectron. Optoelectron. 12, 352-358 (2017). https://doi.org/10.1166/jno.2017.2023
  26. M. Heidariramsheh, M. Haghighi, M.M. Dabbagh, S.M. Mahdavi, Mater Sci Eng B 262, 114701 (2020). https://doi.org/10.1016/j.mseb.2020.114701
  27. A. Patterson, Phys. Rev., 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978
  28. G. Liang, X. Chen, R. Tang, Y. Liu, Y. Li, P. Luo, Z. Su, X. Zhang, P. Fan, S. Chen, Sol. Energy Mater. Sol. Cells 211, 110530 (2020). https://doi.org/10.1016/j.solmat.2020.110530
  29. T.A. Fiducia, K. Li, A.H. Munshi, K. Barth, W.S. Sampath, C.R. Grovenor, J.M. Walls, IEEE J. Photovolt. 10, 685-689 (2019). https://doi.org/10.1109/jphotov.2019.2955313
  30. Y. Zhang, J. Li, G. Jiang, W. Liu, S. Yang, C. Zhu, T. Chen, Sol. RRL 1, 1700017 (2017). https://doi.org/10.1002/solr.201700017
  31. T. Baines, G. Zoppi, L. Bowen, T.P. Shalvey, S. Mariotti, K. Durose, J.D. Major, Sol. Energy Mater. Sol. Cells 180, 196-204 (2018). https://doi.org/10.1016/j.solmat.2018.03.010
  32. J. Gonzalez, S. Shaji, D. Avellaneda, G. Castillo, T. Das Roy, B. Krishnan, Appl. Phys. A 116, 2095-2105 (2014). https://doi.org/10.1007/s00339-014-8411-6
  33. W. Wang, G. Chen, Z. Wang, K. Wang, S. Chen, Z. Huang, X. Wang, T. Chen, C. Zhu, X. Kong, Electrochim. Acta 290, 457-464 (2018). https://doi.org/10.1016/j.electacta.2018.09.087
  34. P. Nair, G.V. Garcia, E.a.Z. Medina, L.G. Martinez, O.L. Castrejon, J.M. Ortiz, M. Nair, Thin Solid Films 645, 305-311 (2018). https://doi.org/10.1016/j.tsf.2017.11.004
  35. P. Arnou, C.S. Cooper, S. Ulicna, A. Abbas, A. Eeles, L.D. Wright, A.V. Malkov, J.M. Walls, J.W. Bowers, Thin Solid Films 633, 76-80 (2017). https://doi.org/10.1016/j.tsf.2016.10.011
  36. S.-K. Lee, J.-K. Sim, N.S. Kissinger, I.-S. Song, J.-S. Kim, B.-J. Baek, C.-R. Lee, J. Alloys Compd. 633, 31-36 (2015). https://doi.org/10.1016/j.jallcom.2015.01.126