DOI QR코드

DOI QR Code

Effect of culture method and medium components on Trametes orientalis mycelium mat formation (Yasuda) Imazeki

배양방법과 배지성분이 시루송편버섯 균사체 매트 형성에 미치는 영향

  • Jeong, Yong-Hyeon (Department Chemical Engineering, Graduate School of Chosun University) ;
  • Kim, Da-Song (Department Chemical Engineering, Graduate School of Chosun University) ;
  • Kim, Hyun-Suk (Jeollanamdo Forest Resources Research Institute) ;
  • Oh, Deuk-Sil (Jeollanamdo Forest Resources Research Institute) ;
  • Shin, Hyun-Jae (Department Chemical Engineering, Graduate School of Chosun University)
  • 정용현 (조선대학교 대학원 화학공학과) ;
  • 김다송 (조선대학교 대학원 화학공학과) ;
  • 김현석 (전라남도산림자원연구소) ;
  • 오득실 (전라남도산림자원연구소) ;
  • 신현재 (조선대학교 대학원 화학공학과)
  • Received : 2022.05.24
  • Accepted : 2022.06.22
  • Published : 2022.06.30

Abstract

Eco-friendly materials, such as alternative vegan materials using various fungal resources, are being actively researched to reduce environmental pollution and facilitate a healthy lifestyle. The fungal mycelium-based mushroom mycelium mat is one such emerging material. In this study, the commonly used mushroom mycelium culture method was modified to reduce the time required to produce the mycelium mat, lower the possibility of contamination, and improve the properties and quality of the mat. Shortening the period required for the previously used primary bag culture and secondary mat production culture. A culture method in which the bag culture was omitted was attempted using a mycelium mutated by gamma irradiation to the mycelium of Trametes orientalis. In addition, various nutrients were added to the fungal solution to observe the change in physical properties of the fungal mat. High-quality mycelium mats were produced in the experimental group containing 1.5% CaCO3 in sawdust medium, and the period was also reduced by more than 10 days compared to the existing production method. In the future, for mass producing mycelium mats, additional selection of medium components and optimization of culture conditions are essential.

기존에 사용되는 1차 봉지배양 및 2차 매트생산 배양에 소요되는 기간을 단축시키기 위해 시루송편버섯 균사체에 Co-60 저준위 감마선 200 Gy 24시간 조사로 돌연변이 시킨 ToM 균사체를 활용하여 봉지배양이 생략된 박스 배양법을 시도하였다. 또한, 매트의 품질 및 물성을 강화시키기 위해 균액으로 ammonium nitrate가 3 g/L첨가된 mYMB6을 사용하였고, CaCO3를 1.5% 함유한 톱밥배지에서 균일한 품질의 균사체 매트 생산이 가능하다는 점을 확인하였으며, 기간 또한 기존의 생산방법과 비교하여 10일 이상 단축할 수 있다. 본 결과는 균사체 기반 친환경 소재 연구에 활용할 수 있을 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 산림청(한국임업진흥원) '산림과학기술 연구개발사업(2020191B10-2022-BA01)'의 지원에 의하여 이루어진 것입니다.

References

  1. Abhijith R, Ashok A, Rejeesh CR. 2018. Sustainable packaging applications from mycelium to substitute polystyrene: a review. Mater Today Proc 5: 2139-2145. https://doi.org/10.1016/j.matpr.2017.09.211
  2. Antinori ME, Ceseracciu L, Mancini G, Heredia-Guerrero JA, Athanassiou A. 2020. Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials. ACS Appl Bio Mater 3: 1044-1051. https://doi.org/10.1021/acsabm.9b01031
  3. Antinori ME, Contardi M, Suarato G, Armirotti A, Bertorelli R, Mancini G, Debellis D, Athanassiou A. 2021. Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci Rep 11: 1-14. https://doi.org/10.1038/s41598-020-79139-8
  4. Appels FVW, van den Brandhof JG, Dijksterhuis J, de Kort GW, Wosten HA. 2020. Fungal mycelium classified in different material families based on glycerol treatment. Commun Biol 3: 1-5. https://doi.org/10.1038/s42003-019-0734-6
  5. Bae B, Kim M, Kim S, Ro HS. 2021. Growth characteristics of polyporales mushrooms for the mycelial mat formation. Mycobiology 49: 280-284. https://doi.org/10.1080/12298093.2021.1911401
  6. Bustillos J, Loganathan A, Agrawal R, Gonzalez BA, Perez MG, Ramaswamy S, Benjamin B, Agarwal A. 2020. Uncovering the mechanical, thermal, and chemical characteristics of biodegradable mushroom leather with intrinsic antifungal and antibacterial properties. ACS Appl Bio Mater 3: 3145-3156. https://doi.org/10.1021/acsabm.0c00164
  7. Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P. 2019. Fungi as source for new bio-based materials: a patent review. Fungal Biol Biotechnol 6: 1-10. https://doi.org/10.1186/s40694-018-0062-5
  8. Choi YH, Lee KH. 2021. Ethical consumers'awareness of vegan materials: Focused on fake fur and fake leather. Sustainability 13: 436. https://doi.org/10.3390/su13010436
  9. Choi D, Maeng JM, Ding JL, Cha WS. 2007. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola. J Microbiol Biotechnol 17: 1369-1378.
  10. Chen L, Zhang BB, Cheung PC. 2012. Comparative proteomic analysis of mushroom cell wall proteins among the different developmental stages of Pleurotus tuberregium. J Agric Food Chem 60: 6173-6182. https://doi.org/10.1021/jf301198b
  11. Gadd GM. 1995. Signal transduction in fungi. In: Gow, N.A.R., Gadd, G.M. (eds) The Growing Fungus. Springer, Dordrecht.
  12. Gandia A, Montalti M, Babbini S. 2020. Method of producing fungal mats and materials made therefrom. PCT/WO/2020/115690.
  13. Holt GA, Mcintyre G, Flagg D, Bayer E, Wanjura JD, Pelletier MG. 2012. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. J Biobased Mater Bioenergy 6: 431-439. https://doi.org/10.1166/jbmb.2012.1241
  14. Haneef M, Ceseracciu L, Canale C, Bayer IS, HerediaGuerrero JA, Athanassiou A. 2017. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci Rep 7: 1-11. https://doi.org/10.1038/s41598-016-0028-x
  15. Jones M, Gandia A, John S, Bismarck A. 2021. Leather-like material biofabrication using fungi. Nat Sustain 4: 9-16. https://doi.org/10.1038/s41893-020-00606-1
  16. Jhune CS, Kong WS, Jang KY, Yoo YB, Do ES, Chun SC. 2004. Effect of CaCO3 treatment on cultivation of oyster mushroom. J Mushrooms 2: 69-75.
  17. Joshi K, Meher MK, Poluri KM. 2020. Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications. ACS Appl Bio Mater 3: 1884-1892. https://doi.org/10.1021/acsabm.9b01047
  18. Kim DS, Kim YW, Kim KJ, Shin HJ. 2017. Research trend and product development potential of fungal mycelium-based composite materials. KSBB J 32: 174-178. https://doi.org/10.7841/ksbbj.2017.32.3.174
  19. Kim HS, Oh CJ, Jeong KJ, Choi MH, Shin HJ, Oh DS. 2020. Culture and mycelim-mat formation characteristics of mutant strains by gamma-ray treatment. J Mushroom 18: 393-397. https://doi.org/10.14480/JM.2020.18.4.393
  20. Mikiashvili N, Elisashvili V, Wasser S, Nevo E. 2005. Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnol Lett 27: 955-959. https://doi.org/10.1007/s10529-005-7662-x
  21. Ma Y, Guan CY, Meng XJ. 2014. Biological characteristics for mycelial growth of Agaricus bisporus. Appl Mech Mater 508: 297-302. https://doi.org/10.4028/www.scientific.net/AMM.508.297
  22. Rollin BE. 2006. The regulation of animal research and the emergence of animal ethics: a conceptual history. Theor Med Bioeth 27: 285-304. https://doi.org/10.1007/s11017-006-9007-8
  23. Raman J, Kim DS, Kim HS, Oh DS, Shin HJ. 2022. Mycofabrication of Mycelium-Based Leather from BrownRot Fungi. J Fungi 8: 317. https://doi.org/10.3390/jof8030317
  24. Royse DJ, Sanchez-Vazquez JE. 2003. Influence of precipitated calcium carbonate (CaCO3)onshiitake(Lentinula edodes) yield and mushroom size. Bioresour Technol 90: 225-228. https://doi.org/10.1016/S0960-8524(03)00119-6
  25. Ross P, Wenner N, Moorleghen C. 2018. Method of producing fungal materials and objects made therefrom. US Patent Application US-20180014468A1. PCT/US2017/042267.
  26. Silverman J, Cao H, Cobb K. 2020. Development of mushroom mycelium composites for footwear products. Cloth Text Res J 38: 119-133. https://doi.org/10.1177/0887302x19890006
  27. Sosnicka A, Kozka B, Makarova K, Giebultowicz J, Klimaszewska, M, Turlo J. 2022. Optimization of white-rot fungi mycelial culture components for bioremediation of pharmaceutical-derived pollutants. Water, 14: 1374. https://doi.org/10.3390/w14091374
  28. Ulziijargal E, Mau JL. 2011. Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia. Int J Med Mushrooms 13: 343-349. https://doi.org/10.1615/IntJMedMushr.v13.i4.40