Acknowledgement
본 연구는 산림청(한국임업진흥원) '산림과학기술 연구개발사업(2020191B10-2022-BA01)'의 지원에 의하여 이루어진 것입니다.
References
- Abhijith R, Ashok A, Rejeesh CR. 2018. Sustainable packaging applications from mycelium to substitute polystyrene: a review. Mater Today Proc 5: 2139-2145. https://doi.org/10.1016/j.matpr.2017.09.211
- Antinori ME, Ceseracciu L, Mancini G, Heredia-Guerrero JA, Athanassiou A. 2020. Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials. ACS Appl Bio Mater 3: 1044-1051. https://doi.org/10.1021/acsabm.9b01031
- Antinori ME, Contardi M, Suarato G, Armirotti A, Bertorelli R, Mancini G, Debellis D, Athanassiou A. 2021. Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci Rep 11: 1-14. https://doi.org/10.1038/s41598-020-79139-8
- Appels FVW, van den Brandhof JG, Dijksterhuis J, de Kort GW, Wosten HA. 2020. Fungal mycelium classified in different material families based on glycerol treatment. Commun Biol 3: 1-5. https://doi.org/10.1038/s42003-019-0734-6
- Bae B, Kim M, Kim S, Ro HS. 2021. Growth characteristics of polyporales mushrooms for the mycelial mat formation. Mycobiology 49: 280-284. https://doi.org/10.1080/12298093.2021.1911401
- Bustillos J, Loganathan A, Agrawal R, Gonzalez BA, Perez MG, Ramaswamy S, Benjamin B, Agarwal A. 2020. Uncovering the mechanical, thermal, and chemical characteristics of biodegradable mushroom leather with intrinsic antifungal and antibacterial properties. ACS Appl Bio Mater 3: 3145-3156. https://doi.org/10.1021/acsabm.0c00164
- Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P. 2019. Fungi as source for new bio-based materials: a patent review. Fungal Biol Biotechnol 6: 1-10. https://doi.org/10.1186/s40694-018-0062-5
- Choi YH, Lee KH. 2021. Ethical consumers'awareness of vegan materials: Focused on fake fur and fake leather. Sustainability 13: 436. https://doi.org/10.3390/su13010436
- Choi D, Maeng JM, Ding JL, Cha WS. 2007. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola. J Microbiol Biotechnol 17: 1369-1378.
- Chen L, Zhang BB, Cheung PC. 2012. Comparative proteomic analysis of mushroom cell wall proteins among the different developmental stages of Pleurotus tuberregium. J Agric Food Chem 60: 6173-6182. https://doi.org/10.1021/jf301198b
- Gadd GM. 1995. Signal transduction in fungi. In: Gow, N.A.R., Gadd, G.M. (eds) The Growing Fungus. Springer, Dordrecht.
- Gandia A, Montalti M, Babbini S. 2020. Method of producing fungal mats and materials made therefrom. PCT/WO/2020/115690.
- Holt GA, Mcintyre G, Flagg D, Bayer E, Wanjura JD, Pelletier MG. 2012. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. J Biobased Mater Bioenergy 6: 431-439. https://doi.org/10.1166/jbmb.2012.1241
- Haneef M, Ceseracciu L, Canale C, Bayer IS, HerediaGuerrero JA, Athanassiou A. 2017. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci Rep 7: 1-11. https://doi.org/10.1038/s41598-016-0028-x
- Jones M, Gandia A, John S, Bismarck A. 2021. Leather-like material biofabrication using fungi. Nat Sustain 4: 9-16. https://doi.org/10.1038/s41893-020-00606-1
- Jhune CS, Kong WS, Jang KY, Yoo YB, Do ES, Chun SC. 2004. Effect of CaCO3 treatment on cultivation of oyster mushroom. J Mushrooms 2: 69-75.
- Joshi K, Meher MK, Poluri KM. 2020. Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications. ACS Appl Bio Mater 3: 1884-1892. https://doi.org/10.1021/acsabm.9b01047
- Kim DS, Kim YW, Kim KJ, Shin HJ. 2017. Research trend and product development potential of fungal mycelium-based composite materials. KSBB J 32: 174-178. https://doi.org/10.7841/ksbbj.2017.32.3.174
- Kim HS, Oh CJ, Jeong KJ, Choi MH, Shin HJ, Oh DS. 2020. Culture and mycelim-mat formation characteristics of mutant strains by gamma-ray treatment. J Mushroom 18: 393-397. https://doi.org/10.14480/JM.2020.18.4.393
- Mikiashvili N, Elisashvili V, Wasser S, Nevo E. 2005. Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnol Lett 27: 955-959. https://doi.org/10.1007/s10529-005-7662-x
- Ma Y, Guan CY, Meng XJ. 2014. Biological characteristics for mycelial growth of Agaricus bisporus. Appl Mech Mater 508: 297-302. https://doi.org/10.4028/www.scientific.net/AMM.508.297
- Rollin BE. 2006. The regulation of animal research and the emergence of animal ethics: a conceptual history. Theor Med Bioeth 27: 285-304. https://doi.org/10.1007/s11017-006-9007-8
- Raman J, Kim DS, Kim HS, Oh DS, Shin HJ. 2022. Mycofabrication of Mycelium-Based Leather from BrownRot Fungi. J Fungi 8: 317. https://doi.org/10.3390/jof8030317
- Royse DJ, Sanchez-Vazquez JE. 2003. Influence of precipitated calcium carbonate (CaCO3)onshiitake(Lentinula edodes) yield and mushroom size. Bioresour Technol 90: 225-228. https://doi.org/10.1016/S0960-8524(03)00119-6
- Ross P, Wenner N, Moorleghen C. 2018. Method of producing fungal materials and objects made therefrom. US Patent Application US-20180014468A1. PCT/US2017/042267.
- Silverman J, Cao H, Cobb K. 2020. Development of mushroom mycelium composites for footwear products. Cloth Text Res J 38: 119-133. https://doi.org/10.1177/0887302x19890006
- Sosnicka A, Kozka B, Makarova K, Giebultowicz J, Klimaszewska, M, Turlo J. 2022. Optimization of white-rot fungi mycelial culture components for bioremediation of pharmaceutical-derived pollutants. Water, 14: 1374. https://doi.org/10.3390/w14091374
- Ulziijargal E, Mau JL. 2011. Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia. Int J Med Mushrooms 13: 343-349. https://doi.org/10.1615/IntJMedMushr.v13.i4.40