DOI QR코드

DOI QR Code

Development of Analytical Solutions on Velocities of Regular Waves Generated by Bottom Wave Makers in a Flume

바닥 조파장치가 설치된 수로에서 규칙파의 유속장에 관한 해석해 개발

  • Jung, Jae-Sang (Sangju District Office, Korea Rural Community Corporation) ;
  • Lee, Changhoon (Department of Civil and Environmental Engineering, Sejong University)
  • 정재상 (한국농어촌공사 상주지사) ;
  • 이창훈 (세종대학교 건설환경공학과)
  • Received : 2022.05.29
  • Accepted : 2022.06.13
  • Published : 2022.06.30

Abstract

Analytical solutions for two-dimensional velocities of regular waves generated by bottom wave makers in a flume were derived in this study. Triangular and rectangular bottom wave makers were adopted. The velocity potential was derived based on the linear wave theory with the bottom moving boundary condition, kinematic and dynamic free surface boundary conditions. Then, analytical solutions of two-dimensional particle velocities were derived from the velocity potential. The velocity potential and two-dimensional particle velocities which were derived as complex integral equations were numerically calculated. The solutions showed physically valid results as velocities of regular waves generated by bottom wave makers in a flume.

본 연구에서는 바닥 조파장치가 설치된 수로에서 재현된 규칙파의 2차원 유속장에 대한 해석해를 유도하였다. 바닥 조파장치로 삼각형 및 사각형 형상이 적용되었다. 선형파 이론과 움직이는 바닥에 대한 경계조건, 동역학적 및 운동학적 자유수면 경계조건을 이용하여 속도포텐셜을 유도하였으며, 이로부터 각 방향 성분의 유속에 대한 해석해를 구하였다. 적분식 형태로 유도된 속도포텐셜 및 유속에 대한 해석해를 수치해석으로 계산하였다. 유도된 해석해는 바닥 조파장치가 설치된 조파수로에서 규칙파의 유속 특성에 대해 물리적으로 타당한 결과를 보였다.

Keywords

Acknowledgement

본 연구는 국토교통부 국토교통기술촉진연구사업의 연구비지원(과제번호: 22CTAP-C164367-02)에 의해 수행되었습니다.

References

  1. Dean, R.G. and Dalrymple, R.A. (1991). Water wave mechanics for engineers and scientist. World Scientific Publishing Company.
  2. Hammack, J.L. (1973). A note on tsunamis: their generation and propagation in an ocean of uniform depth. Journal of Fluid Mechanics., 60(4), 769-799. https://doi.org/10.1017/S0022112073000479
  3. Jung, J.-S., Pham, V.K. and Lee, C. (2018). Ability of bottom moving wave maker: comparison of analytical solution and numerical analysis. Proc. of the Korean Association of Ocean Science and Technology, Jeju ICC, Rep. of Korea (in Korean).
  4. Jung, J.-S., Lee, C., Tran, M.T. and Park, Y.-S. (2022). Wave generation with bottom wave maker using analytical method and mild-slope equation. Coastal Eng. (under review).
  5. Jung, T. and Son, S. (2018). Propagation of tsunamis generated by seabed motion with time-history and spatial-distribution: an analytical approach. Journal of Korean Society of Coastal and Ocean Engineers, 30(6), 263-269 (in Korean). https://doi.org/10.9765/KSCOE.2018.30.6.263
  6. Jung, T. and Son, S. (2021). Active tsunami generation by tectonic seafloor deformation of arbitrary geometry considering rupture kinematics. Wave Motion, 100, 102683. https://doi.org/10.1016/j.wavemoti.2020.102683
  7. Lu, H., Park, Y.S. and Cho, Y.-S. (2017). Modelling of long waves generated by bottom-tilting wave maker. Coastal Engineering, 122, 1-9. https://doi.org/10.1016/j.coastaleng.2017.01.007
  8. Mahjouri, S., Shabani, R., Badiei, P. and Rezazadeh, G. (2021). A bottom mounted wavemaker in water wave flumes. Journal of Hydraulic Research, 59(4), 663-669.