DOI QR코드

DOI QR Code

영구자석 스크랩으로 합성한 산화철 나노입자의 물성에 미치는 열처리 온도의 영향

Effect of Heat-treatment Temperature on the Physical Properties of Iron Oxide Nanoparticles Synthesized by Using Permanent Magnet Scrap

  • 홍성제 (한국전자기술연구원 디스플레이연구센터) ;
  • 홍상혁 (한국전자기술연구원 디스플레이연구센터) ;
  • 조아진 (한국전자기술연구원 디스플레이연구센터) ;
  • 김용성 (서울과학기술대학교 비파괴실증연구센터) ;
  • 김병준 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 양수원 ((주)한청알에프) ;
  • 이재용 ((주)한청알에프)
  • Hong, Sung-Jei (Display Research Center, Korea Electronics Technology Institute) ;
  • Hong, Sang Hyeok (Display Research Center, Korea Electronics Technology Institute) ;
  • Jo, Ajin (Display Research Center, Korea Electronics Technology Institute) ;
  • Kim, Young-Sung (SeoulTech NDT Research Center (SNDT), Seoul National University of Science and Technology) ;
  • Kim, ByeongJun (Graduate School of NIDE Fusing Technology, Seoul National University of Science and Technology) ;
  • Yang, Suwon (Han Chung RF, Co., Ltd.) ;
  • Lee, Jae-Yong (Han Chung RF, Co., Ltd.)
  • 투고 : 2022.04.08
  • 심사 : 2022.05.26
  • 발행 : 2022.06.30

초록

본 연구에서는 NdFeB 영구자석 스크랩으로부터 회수한 철(Fe) 부산물을 이용하여 산화철(FeOx) 나노입자를 합성하였고, 열처리 온도가 FeOx 나노입자의 물성에 미치는 영향을 관찰하였다. 이를 위해 D.I. water에 약 10 wt%로 희석한 철 부산물 용액에 2.0 M 암모니아(NH4OH) 용액을 투여하여 산화철 전구체를 석출하였고, 이를 300 ℃, 400 ℃, 500 ℃ 및 600 ℃로 각각 열처리하여 FeOx 나노 입자를 합성, 열처리 온도에 따른 FeOx 나노 입자의 물성을 관찰하였다. X-ray diffraction (XRD) 분석 결과 열처리 온도가 증가할수록 <104> 회절 피크가 성장하여 500 ℃ 이상에서 α-Fe2O3 결정구조와 일치하는 회절 피크가 검출되었다. BET (Brunauer-Emmett-Teller) 비표면적 분석 결과 400 ℃ 이상에서 열처리 온도가 증가할수록 비표면적이 감소하는 경향을 나타내었다. HRTEM (high resolution transmission electron microscope) 관찰 결과 rod 형 나노입자가 관찰되었고, 열처리 온도 증가에 따라 나노입자의 크기가 증가하는 경향을 나타내었다.

In this study, iron oxide (FeOx) nanoparticles were synthesized using iron (Fe) by-products recovered from NdFeB permanent magnet scraps, and the effect of heat-treatment temperature on the physical properties of the FeOx nanoparticles was investigated. In order to prepare the FeOx nanoparticles, 2.0 M ammonia (NH4OH) solution was added to an iron by-product solution diluted to c.a. 10 wt% in D.I. water, which led to the precipitation of the iron oxide precursor. Then, the FeOx nanoparticles were synthesized by heat-treatment at 300 ℃, 400 ℃, 500 ℃ and 600 ℃. After that, the physical properties of the FeOx nanoparticles were investigated in order to understand the effect of the heat-treatment temperature. The results of the X-ray diffraction (XRD) analysis showed that the diffraction peak in accordance with the <104> direction increased as the heat-treatment increased, and a diffraction peak indicating the α-Fe2O3 crystal structure was detected at heat-treatment temperatures above 500 ℃. The BET specific surface area analysis revealed that the specific surface area decreased as the heat-treatment temperature increased to above 400 ℃. Observation with a high resolution transmission electron microscope (HRTEM) showed that rod-shaped nanoparticles were formed, and the size of the nanoparticles showed a tendency to increase as the heat-treatment temperature increased.

키워드

과제정보

본 연구는 2020년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제로 이에 감사드립니다 (No. 20205210100070).

참고문헌

  1. Lee, S.-S., Lee, N.-R., Kim, K.-I., and Hong, T.-W., "Environmental Impacts Assessment of ITO (Indium Tin Oxide) Using Material Life Cycle Assessment," Clean Technol., 18(1), 69-75 (2012). https://doi.org/10.7464/KSCT.2012.18.1.069
  2. Yi, H.-C., Kang, H.-Y., Shim, K., Kim, J., and Sim, J., "A Study on the Standard Method to Calculate Recyclability Rate of Electrical and Electronic Equipments," Clean Technol., 15(1), 23-30 (2009).
  3. Choi, J., Chang, T.S., and Kim, B.-S., "Recent Development of Carbon Dioxide Conversion Technology," Clean Technol., 18(3), 229-249 (2012). https://doi.org/10.7464/KSCT.2012.18.3.229
  4. Kim, Y.W., Kim, J.B., Hwang, Y.W., and Park, J.H., "Economic Analysis and CO2 Emissions Analysis by Circulating the Industrial Waste Resource between Companies," Clean Technol., 18(1), 111-119 (2012). https://doi.org/10.7464/KSCT.2012.18.1.111
  5. Park, J.W., Yi, H.-C., Park, M.W., and Sohn, Y.T., "A Study on Monitoring System Architecture for Calculation of Practical Recycling Rate of End of Life Vehicle," Clean Technol., 18(4), 373-378 (2012). https://doi.org/10.7464/KSCT.2012.18.4.373
  6. Kim, K., Kim, G., Lee, H., and Kang, J., "Breakage and Surface Oxidation Characteristics of Waste NdFeB Magnet for Recycling," J. Kor. Inst. Resour. Recycl., 28(3), 26-34 (2019). https://doi.org/10.7844/KIRR.2019.28.3.26
  7. Joya, M.R., J. Bar'on-Jaimez, M.R., and Barba-Ortega, J., "Preparation and characterization of Fe2O3 nanoparticles," J. Phys: Conf. Ser., 466, 012004 (2013). https://doi.org/10.1088/1742-6596/466/1/012004
  8. Ha, Y., Gang, R.-J., Choi, S.-H., Yo, Yoon, H.-S., and Ahn, J.-G., "Synthesis of Iron Nanopowder from FeCl3 Solution by Chemical Reduction Method for Recycling of Spent Neodymium Magnet," J. Kor. Acad.-Ind. cooper. Soc., 13(12), 6187-6195 (2012). https://doi.org/10.5762/KAIS.2012.13.12.6187
  9. Liu, Z., Lv, B., Wu, D., Sun, Y., and Xu, Y., "Magnetic and electrochemical behavior of rhombohedral α-Fe2O3 nanoparticles with (104) dominant facets," Particuology, 11(3), 327-333 (2013). https://doi.org/10.1016/j.partic.2012.06.016
  10. Shigeno, E., Shimizu, K., Seki, S., Ogawa, M., Shida, A., Ide, M., and Sawada, Y., "Formation of indium-tin-oxide films by dip coating process using indium dipropionate monohydroxide," Thin Solid Films, 411(1), 56-59 (2002). https://doi.org/10.1016/S0040-6090(02)00187-6
  11. Mendelev, M.I., and Srolovitz, D.J., "Impurity effects on grain boundary migration," Model. Simul. Mater. Sci. Eng., 10(6), R79-R109 (2002). https://doi.org/10.1088/0965-0393/10/6/201