Acknowledgement
This study was financed in part by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). The authors also thank Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for support through the Procad-Defesa program, professor Su Jian, Kieran Nelson for his proofreading service and the reviewers for their thoughtful comments and efforts towards improving our manuscript.
References
- E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957) 620-630, https://doi.org/10.1103/PhysRev.106.620.
- G. Kaniadakis, Statistical mechanics in the context of special relativity. II, Phys. Rev. E 72 (2005), 036108, https://doi.org/10.1103/PhysRevE.72.036108.
- G. Kaniadakis, Statistical mechanics in the context of special relativity, Phys. Rev. E 66 (2002), 056125, https://doi.org/10.1103/PhysRevE.66.056125.
- G. Kaniadakis, Non-linear kinetics underlying generalized statistics, Phys A Stat Mech Its Appl 296 (2001) 405-425, https://doi.org/10.1016/S0378-4371(01)00184-4.
- G. Guedes, A.C. Goncalves, D.A. Palma, The Doppler broadening function using the kaniadakis distribution, Ann. Nucl. Energy 110 (2017) 453-458, https://doi.org/10.1016/j.anucene.2017.06.057.
- W.V. de Abreu, A.C. Goncalves, A.S. Martinez, Analytical solution for the Doppler broadening function using the Kaniadakis distribution, Ann. Nucl. Energy 126 (2019) 262-268, https://doi.org/10.1016/j.anucene.2018.11.023.
- W.V. de Abreu, A.C. Goncalves, A.S. Martinez, New analytical formulations for the Doppler broadening function and interference term based on Kaniadakis distributions, Ann. Nucl. Energy 135 (2020), 106960, https://doi.org/10.1016/j.anucene.2019.106960.
- P.-H. Chavanis, Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence, Phys. Rev. E 68 (2003), 036108, https://doi.org/10.1103/PhysRevE.68.036108.
- J.C. Carvalho, R. Silva, J.D. do Nascimento jr., B.B. Soares, J.R. De Medeiros, Observational measurement of open stellar clusters: a test of Kaniadakis and Tsallis statistics, EPL (Europhysics Lett 91 (2010) 69002, https://doi.org/10.1209/0295-5075/91/69002.
- A.M. Teweldeberhan, H.G. Miller, R. Tegen, k-deformed statistics and the formation of a quark-gluon plasma, Int. J. Mod. Phys. E 12 (2003) 669-673, https://doi.org/10.1142/S021830130300148X.
- F. Topsoe, Entropy and equilibrium via games of complexity, Phys A Stat Mech Its Appl 340 (2004) 11-31, https://doi.org/10.1016/j.physa.2004.03.073.
- T. Wada, H. Suyari, k-generalization of Gauss' law of error, Phys. Lett. 348 (2006) 89-93, https://doi.org/10.1016/j.physleta.2005.08.086.
- T. Wada, H. Suyari, A two-parameter generalization of Shannon-Khinchin axioms and the uniqueness theorem, Phys. Lett. 368 (2007) 199-205, https://doi.org/10.1016/j.physleta.2007.04.009.
- A.Y. Abul-Magd, Non-extensive random-matrix theory based on Kaniadakis entropy, Phys. Lett. 361 (2007) 450-454, https://doi.org/10.1016/j.physleta.2006.09.080.
- A.I. Olemskoi, V.O. Kharchenko, V.N. Borisyuk, Multifractal spectrum of phase space related to generalized thermostatistics, Phys A Stat Mech Its Appl 387 (2008) 1895-1906, https://doi.org/10.1016/j.physa.2007.11.045.
- I. Lourek, M. Tribeche, Dust charging current in non equilibrium dusty plasma in the context of Kaniadakis generalization, Phys A Stat Mech Its Appl 517 (2019) 522-529, https://doi.org/10.1016/j.physa.2018.11.008.
- E.M.C. Abreu, J.A. Neto, E.M. Barboza, R.C. Nunes, Tsallis and Kaniadakis statistics from the viewpoint of entropic gravity formalism, Int J Mod Phys A 32 (2017), 1750028, https://doi.org/10.1142/S0217751X17500282.
- E.M.C. Abreu, J.A. Neto, A.C.R. Mendes, A. Bonilla, R.M. de Paula, Cosmological considerations in Kaniadakis statistics, EPL (Europhysics Lett 124 (2018) 30003, https://doi.org/10.1209/0295-5075/124/30003.
- G. Kaniadakis, M.M. Baldi, T.S. Deisboeck, G. Grisolia, D.T. Hristopulos, A.M. Scarfone, et al., The k-statistics approach to epidemiology, Sci. Rep. 10 (2020) 19949, https://doi.org/10.1038/s41598-020-76673-3.
- W.V. De Abreu, A.C. Goncalves, A.S. Martinez, An analytical approximation for the generalized interference term using the kaniadakis distribution, Proc Int Conf Nucl Eng 27 (2019) 1912, https://doi.org/10.1299/jsmeicone.2019.27.1912, 2019.
- C.W. Churchill, S.S. Vogt, J.C. Charlton, The physical conditions of intermediate-redshift M[CLC]g[/CLC] [CSC]ii[/CSC] absorbing clouds from Voigt profile Analysis, Astron. J. 125 (2003) 98-115, https://doi.org/10.1086/345513.
- D. De Sousa Meneses, G. Gruener, M. Malki, P. Echegut, Causal Voigt profile for modeling reflectivity spectra of glasses, J. Non-Cryst. Solids 351 (2005) 124-129, https://doi.org/10.1016/j.jnoncrysol.2004.09.028.
- G. Pagnini, F. Mainardi, Evolution equations for the probabilistic generalization of the Voigt profile function, J. Comput. Appl. Math. 233 (2010) 1590-1595, https://doi.org/10.1016/j.cam.2008.04.040.
- R.A. Kycia, S. Jadach, Relativistic Voigt profile for unstable particles in high energy physics, J. Math. Anal. Appl. 463 (2018) 1040-1051, https://doi.org/10.1016/j.jmaa.2018.03.065.
- R.B. Von Dreele, S.M. Clarke, J.P.S. Walsh, 'Pink'-beam X-ray powder diffraction profile and its use in Rietveld refinement, J. Appl. Crystallogr. 54 (2021) 3-6, https://doi.org/10.1107/S1600576720014624.
- C. Josey, P. Ducru, B. Forget, K. Smith, Windowed multipole for cross section Doppler broadening, J. Comput. Phys. 307 (2016) 715-727, https://doi.org/10.1016/j.jcp.2015.08.013.
- S. Esmail, P. Agrawal, S. Aly, A novel analytical approach for advection diffusion equation for radionuclide release from an area source, Nucl Eng Technol 52 (2020) 819-826, https://doi.org/10.1016/j.net.2019.09.018.
- J.C. Jo, J.-J. Jeong, F.J. Moody, Numerical and analytical predictions of nuclear steam generator secondary side flow field during blowdown due to a feed-water line break, Nucl Eng Technol 53 (2021) 1029-1040, https://doi.org/10.1016/j.net.2020.08.022.
- P. Walls, Simpson's Rule, Univ Br Columbia, 2019. https://secure.math.ubc.ca/~pwalls/math-python/integration/simpsons-rule/.
- WV de Abreu, Solucao analitica da funcao de alargamento Doppler usando a distribuicao de Kaniadakis, Universidade Federal do Rio de Janeiro, 2020, https://doi.org/10.13140/RG.2.2.32080.12802/3.
- T.P.R. Campos, A.S. Martinez, The dependence of practical width on temperature, Ann. Nucl. Energy 14 (1987) 241-247, https://doi.org/10.1016/0306-4549(87)90045-4.
- D.A. Palma, A.S. Martinez, F.C. Silva, The derivation of the Doppler broadening function using Frobenius method, J. Nucl. Sci. Technol. 43 (2006) 617-622, https://doi.org/10.1080/18811248.2006.9711141.
- G.F. Simmons, in: Differential Equations with Applications and Historical Notes, second ed., McGraw=Hill, Inc., New York, 1991.
- G.B. Arfken, H.J. Weber, F.H. Harris, in: Mathematical Methods for Physicists, seventh ed., Academic Press, Elesvier, 2013. Waltham.
- W.E. Boyce, R.C. DiPrima, Second order linear equations, in: Elem. Differ. Equations Bound. Value Probl, tenth ed., John Wiley & Sons, 2012.
- K. Tada, S. Kunieda, Y. Nagaya, Nuclear Data Processing Code FRENDY Version 1, Japan Atomic Energy Agency, 2018, https://doi.org/10.11484/jaea-datacode-2018-014.
- D.A.P. Palma, A.D.C. Goncalves, A.S. Martinez, An alternative analytical formulation for the Voigt function applied to resonant effects in nuclear processes, Nucl Instruments Method. Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 654 (2011) 406-411, https://doi.org/10.1016/j.nima.2011.07.029.
- K. Tada, Y. Nagaya, S. Kunieda, K. Suyama, T. Fukahori, FRENDY: a new nuclear data processing system being developed at JAEA, EPJ Web Conf. 146 (2017), 02028, https://doi.org/10.1051/epjconf/201714602028.
- Python, Timeit, n.d. https://docs.python.org/3/library/timeit.html.
- T. Steininger, M. Greiner, F. Beaujean, T. Ensslin, d2o: a distributed data object for parallel high-performance computing in Python, J Big Data 3 (2016) 17, https://doi.org/10.1186/s40537-016-0052-5.
- J.M. Huntenburg, C.J. Steele, P.-L. Bazin, Nighres: processing tools for high-resolution neuroimaging, GigaScience 7 (2018) 1-9, https://doi.org/10.1093/gigascience/giy082.
- T. Solc, M. Mohorcic, C. Fortuna, A methodology for experimental evaluation of signal detection methods in spectrum sensing, PLoS One 13 (2018), e0199550, https://doi.org/10.1371/journal.pone.0199550.
- P. Heyken Soares, Zone-based public transport route optimisation in an urban network, Public Transp 13 (2021) 197-231, https://doi.org/10.1007/s12469-020-00242-0.