DOI QR코드

DOI QR Code

A novel analytical solution of the deformed Doppler broadening function using the Kaniadakis distribution and the comparison of computational efficiencies with the numerical solution

  • Abreu, Willian V. de (Nuclear Engineering Program - PEN/COPPE-Universidade Federal do Rio de Janeiro) ;
  • Martinez, Aquilino S. (Nuclear Engineering Program - PEN/COPPE-Universidade Federal do Rio de Janeiro) ;
  • Carmo, Eduardo D. do (Nuclear Engineering Program - PEN/COPPE-Universidade Federal do Rio de Janeiro) ;
  • Goncalves, Alessandro C. (Nuclear Engineering Program - PEN/COPPE-Universidade Federal do Rio de Janeiro)
  • Received : 2021.07.20
  • Accepted : 2021.10.05
  • Published : 2022.04.25

Abstract

This paper aims to present a new method for obtaining an analytical solution for the Kaniadakis Doppler broadening (KDB) function. Also, in this work, we report the computational efficiencies of this solution compared with the numerical one. The solution of the differential equation achieved in this paper is free of approximations and is, consequently, a more robust methodology for obtaining an analytical representation of ψk. Moreover, the results show an improvement in efficiency using the analytical approximation, indicating that it may be helpful in different applications that require the calculation of the deformed Doppler broadening function.

Keywords

Acknowledgement

This study was financed in part by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). The authors also thank Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for support through the Procad-Defesa program, professor Su Jian, Kieran Nelson for his proofreading service and the reviewers for their thoughtful comments and efforts towards improving our manuscript.

References

  1. E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957) 620-630, https://doi.org/10.1103/PhysRev.106.620.
  2. G. Kaniadakis, Statistical mechanics in the context of special relativity. II, Phys. Rev. E 72 (2005), 036108, https://doi.org/10.1103/PhysRevE.72.036108.
  3. G. Kaniadakis, Statistical mechanics in the context of special relativity, Phys. Rev. E 66 (2002), 056125, https://doi.org/10.1103/PhysRevE.66.056125.
  4. G. Kaniadakis, Non-linear kinetics underlying generalized statistics, Phys A Stat Mech Its Appl 296 (2001) 405-425, https://doi.org/10.1016/S0378-4371(01)00184-4.
  5. G. Guedes, A.C. Goncalves, D.A. Palma, The Doppler broadening function using the kaniadakis distribution, Ann. Nucl. Energy 110 (2017) 453-458, https://doi.org/10.1016/j.anucene.2017.06.057.
  6. W.V. de Abreu, A.C. Goncalves, A.S. Martinez, Analytical solution for the Doppler broadening function using the Kaniadakis distribution, Ann. Nucl. Energy 126 (2019) 262-268, https://doi.org/10.1016/j.anucene.2018.11.023.
  7. W.V. de Abreu, A.C. Goncalves, A.S. Martinez, New analytical formulations for the Doppler broadening function and interference term based on Kaniadakis distributions, Ann. Nucl. Energy 135 (2020), 106960, https://doi.org/10.1016/j.anucene.2019.106960.
  8. P.-H. Chavanis, Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence, Phys. Rev. E 68 (2003), 036108, https://doi.org/10.1103/PhysRevE.68.036108.
  9. J.C. Carvalho, R. Silva, J.D. do Nascimento jr., B.B. Soares, J.R. De Medeiros, Observational measurement of open stellar clusters: a test of Kaniadakis and Tsallis statistics, EPL (Europhysics Lett 91 (2010) 69002, https://doi.org/10.1209/0295-5075/91/69002.
  10. A.M. Teweldeberhan, H.G. Miller, R. Tegen, k-deformed statistics and the formation of a quark-gluon plasma, Int. J. Mod. Phys. E 12 (2003) 669-673, https://doi.org/10.1142/S021830130300148X.
  11. F. Topsoe, Entropy and equilibrium via games of complexity, Phys A Stat Mech Its Appl 340 (2004) 11-31, https://doi.org/10.1016/j.physa.2004.03.073.
  12. T. Wada, H. Suyari, k-generalization of Gauss' law of error, Phys. Lett. 348 (2006) 89-93, https://doi.org/10.1016/j.physleta.2005.08.086.
  13. T. Wada, H. Suyari, A two-parameter generalization of Shannon-Khinchin axioms and the uniqueness theorem, Phys. Lett. 368 (2007) 199-205, https://doi.org/10.1016/j.physleta.2007.04.009.
  14. A.Y. Abul-Magd, Non-extensive random-matrix theory based on Kaniadakis entropy, Phys. Lett. 361 (2007) 450-454, https://doi.org/10.1016/j.physleta.2006.09.080.
  15. A.I. Olemskoi, V.O. Kharchenko, V.N. Borisyuk, Multifractal spectrum of phase space related to generalized thermostatistics, Phys A Stat Mech Its Appl 387 (2008) 1895-1906, https://doi.org/10.1016/j.physa.2007.11.045.
  16. I. Lourek, M. Tribeche, Dust charging current in non equilibrium dusty plasma in the context of Kaniadakis generalization, Phys A Stat Mech Its Appl 517 (2019) 522-529, https://doi.org/10.1016/j.physa.2018.11.008.
  17. E.M.C. Abreu, J.A. Neto, E.M. Barboza, R.C. Nunes, Tsallis and Kaniadakis statistics from the viewpoint of entropic gravity formalism, Int J Mod Phys A 32 (2017), 1750028, https://doi.org/10.1142/S0217751X17500282.
  18. E.M.C. Abreu, J.A. Neto, A.C.R. Mendes, A. Bonilla, R.M. de Paula, Cosmological considerations in Kaniadakis statistics, EPL (Europhysics Lett 124 (2018) 30003, https://doi.org/10.1209/0295-5075/124/30003.
  19. G. Kaniadakis, M.M. Baldi, T.S. Deisboeck, G. Grisolia, D.T. Hristopulos, A.M. Scarfone, et al., The k-statistics approach to epidemiology, Sci. Rep. 10 (2020) 19949, https://doi.org/10.1038/s41598-020-76673-3.
  20. W.V. De Abreu, A.C. Goncalves, A.S. Martinez, An analytical approximation for the generalized interference term using the kaniadakis distribution, Proc Int Conf Nucl Eng 27 (2019) 1912, https://doi.org/10.1299/jsmeicone.2019.27.1912, 2019.
  21. C.W. Churchill, S.S. Vogt, J.C. Charlton, The physical conditions of intermediate-redshift M[CLC]g[/CLC] [CSC]ii[/CSC] absorbing clouds from Voigt profile Analysis, Astron. J. 125 (2003) 98-115, https://doi.org/10.1086/345513.
  22. D. De Sousa Meneses, G. Gruener, M. Malki, P. Echegut, Causal Voigt profile for modeling reflectivity spectra of glasses, J. Non-Cryst. Solids 351 (2005) 124-129, https://doi.org/10.1016/j.jnoncrysol.2004.09.028.
  23. G. Pagnini, F. Mainardi, Evolution equations for the probabilistic generalization of the Voigt profile function, J. Comput. Appl. Math. 233 (2010) 1590-1595, https://doi.org/10.1016/j.cam.2008.04.040.
  24. R.A. Kycia, S. Jadach, Relativistic Voigt profile for unstable particles in high energy physics, J. Math. Anal. Appl. 463 (2018) 1040-1051, https://doi.org/10.1016/j.jmaa.2018.03.065.
  25. R.B. Von Dreele, S.M. Clarke, J.P.S. Walsh, 'Pink'-beam X-ray powder diffraction profile and its use in Rietveld refinement, J. Appl. Crystallogr. 54 (2021) 3-6, https://doi.org/10.1107/S1600576720014624.
  26. C. Josey, P. Ducru, B. Forget, K. Smith, Windowed multipole for cross section Doppler broadening, J. Comput. Phys. 307 (2016) 715-727, https://doi.org/10.1016/j.jcp.2015.08.013.
  27. S. Esmail, P. Agrawal, S. Aly, A novel analytical approach for advection diffusion equation for radionuclide release from an area source, Nucl Eng Technol 52 (2020) 819-826, https://doi.org/10.1016/j.net.2019.09.018.
  28. J.C. Jo, J.-J. Jeong, F.J. Moody, Numerical and analytical predictions of nuclear steam generator secondary side flow field during blowdown due to a feed-water line break, Nucl Eng Technol 53 (2021) 1029-1040, https://doi.org/10.1016/j.net.2020.08.022.
  29. P. Walls, Simpson's Rule, Univ Br Columbia, 2019. https://secure.math.ubc.ca/~pwalls/math-python/integration/simpsons-rule/.
  30. WV de Abreu, Solucao analitica da funcao de alargamento Doppler usando a distribuicao de Kaniadakis, Universidade Federal do Rio de Janeiro, 2020, https://doi.org/10.13140/RG.2.2.32080.12802/3.
  31. T.P.R. Campos, A.S. Martinez, The dependence of practical width on temperature, Ann. Nucl. Energy 14 (1987) 241-247, https://doi.org/10.1016/0306-4549(87)90045-4.
  32. D.A. Palma, A.S. Martinez, F.C. Silva, The derivation of the Doppler broadening function using Frobenius method, J. Nucl. Sci. Technol. 43 (2006) 617-622, https://doi.org/10.1080/18811248.2006.9711141.
  33. G.F. Simmons, in: Differential Equations with Applications and Historical Notes, second ed., McGraw=Hill, Inc., New York, 1991.
  34. G.B. Arfken, H.J. Weber, F.H. Harris, in: Mathematical Methods for Physicists, seventh ed., Academic Press, Elesvier, 2013. Waltham.
  35. W.E. Boyce, R.C. DiPrima, Second order linear equations, in: Elem. Differ. Equations Bound. Value Probl, tenth ed., John Wiley & Sons, 2012.
  36. K. Tada, S. Kunieda, Y. Nagaya, Nuclear Data Processing Code FRENDY Version 1, Japan Atomic Energy Agency, 2018, https://doi.org/10.11484/jaea-datacode-2018-014.
  37. D.A.P. Palma, A.D.C. Goncalves, A.S. Martinez, An alternative analytical formulation for the Voigt function applied to resonant effects in nuclear processes, Nucl Instruments Method. Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 654 (2011) 406-411, https://doi.org/10.1016/j.nima.2011.07.029.
  38. K. Tada, Y. Nagaya, S. Kunieda, K. Suyama, T. Fukahori, FRENDY: a new nuclear data processing system being developed at JAEA, EPJ Web Conf. 146 (2017), 02028, https://doi.org/10.1051/epjconf/201714602028.
  39. Python, Timeit, n.d. https://docs.python.org/3/library/timeit.html.
  40. T. Steininger, M. Greiner, F. Beaujean, T. Ensslin, d2o: a distributed data object for parallel high-performance computing in Python, J Big Data 3 (2016) 17, https://doi.org/10.1186/s40537-016-0052-5.
  41. J.M. Huntenburg, C.J. Steele, P.-L. Bazin, Nighres: processing tools for high-resolution neuroimaging, GigaScience 7 (2018) 1-9, https://doi.org/10.1093/gigascience/giy082.
  42. T. Solc, M. Mohorcic, C. Fortuna, A methodology for experimental evaluation of signal detection methods in spectrum sensing, PLoS One 13 (2018), e0199550, https://doi.org/10.1371/journal.pone.0199550.
  43. P. Heyken Soares, Zone-based public transport route optimisation in an urban network, Public Transp 13 (2021) 197-231, https://doi.org/10.1007/s12469-020-00242-0.