참고문헌
- Weaver O, Leung JWT. Biomarkers and imaging of breast cancer. AJR Am J Roentgenol 2018;210:271-278 https://doi.org/10.2214/AJR.17.18708
- Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007;356:227-236 https://doi.org/10.1056/NEJMoa062790
- Butler RS, Hooley RJ. Screening breast ultrasound: update after 10 years of breast density notification laws. AJR Am J Roentgenol 2020;214:1424-1435 https://doi.org/10.2214/AJR.19.22275
- Berg WA, Rafferty EA, Friedewald SM, Hruska CB, Rahbar H. Screening algorithms in dense breasts: AJR expert panel narrative review. AJR Am J Roentgenol 2021;216:275-294 https://doi.org/10.2214/AJR.20.24436
- Ohuchi N, Suzuki A, Sobue T, Kawai M, Yamamoto S, Zheng YF, et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet 2016;387:341-348 https://doi.org/10.1016/S0140-6736(15)00774-6
- Comstock CE, Gatsonis C, Newstead GM, Snyder BS, Gareen IF, Bergin JT, et al. Comparison of abbreviated breast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening. JAMA 2020;323:746-756 https://doi.org/10.1001/jama.2020.0572
- Bakker MF, de Lange SV, Pijnappel RM, Mann RM, Peeters PHM, Monninkhof EM, et al. Supplemental MRI screening for women with extremely dense breast tissue. N Engl J Med 2019;381:2091-2102 https://doi.org/10.1056/NEJMoa1903986
- Cho N, Han W, Han BK, Bae MS, Ko ES, Nam SJ, et al. Breast cancer screening with mammography plus ultrasonography or magnetic resonance imaging in women 50 years or younger at diagnosis and treated with breast conservation therapy. JAMA Oncol 2017;3:1495-1502 https://doi.org/10.1001/jamaoncol.2017.1256
- Melnikow J, Fenton JJ, Whitlock EP, Miglioretti DL, Weyrich MS, Thompson JH, et al. Supplemental screening for breast cancer in women with dense breasts: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 2016;164:268-278 https://doi.org/10.7326/M15-1789
- Sprague BL, Gangnon RE, Burt V, Trentham-Dietz A, Hampton JM, Wellman RD, et al. Prevalence of mammographically dense breasts in the United States. J Natl Cancer Inst 2014;106:dju255
- Hong S, Song SY, Park B, Suh M, Choi KS, Jung SE, et al. Effect of digital mammography for breast cancer screening: a comparative study of more than 8 million Korean women. Radiology 2020;294:247-255 https://doi.org/10.1148/radiol.2019190951
- Kerlikowske K, Sprague BL, Tosteson ANA, Wernli KJ, Rauscher GH, Johnson D, et al. Strategies to identify women at high risk of advanced breast cancer during routine screening for discussion of supplemental imaging. JAMA Intern Med 2019;179:1230-1239 https://doi.org/10.1001/jamainternmed.2019.1758
- Singletary SE. Rating the risk factors for breast cancer. Ann Surg 2003;237:474-482 https://doi.org/10.1097/01.SLA.0000059969.64262.87
- Kuhl CK. Predict, then act: moving toward tailored prevention. J Clin Oncol 2019;37:943-945 https://doi.org/10.1200/JCO.19.00068
- Mendelson EB, Bohm-Velez M, Berg WA, Whitman GJ, Feldman MI, Madjar H, et al. ACR BI-RADS ultrasound. In: Orsi CJ, Sickles EA, Mendelson EB, Morris EA, eds. ACR BI-RADS Atlas, breast imaging reporting and data system, 5th ed. Reston: American College of Radiology, 2013:128-130
- Izumori A, Horii R, Akiyama F, Iwase T. Proposal of a novel method for observing the breast by high-resolution ultrasound imaging: understanding the normal breast structure and its application in an observational method for detecting deviations. Breast Cancer 2013;20:83-91 https://doi.org/10.1007/s12282-011-0313-2
- Stavros AT. Breast ultrasound. Philadelphia: Lippincott Williams & Wilkins, 2004:65-78
- McKian KP, Reynolds CA, Visscher DW, Nassar A, Radisky DC, Vierkant RA, et al. Novel breast tissue feature strongly associated with risk of breast cancer. J Clin Oncol 2009;27:5893-5898 https://doi.org/10.1200/JCO.2008.21.5079
- Ghosh K, Hartmann LC, Reynolds C, Visscher DW, Brandt KR, Vierkant RA, et al. Association between mammographic density and age-related lobular involution of the breast. J Clin Oncol 2010;28:2207-2212 https://doi.org/10.1200/JCO.2009.23.4120
- Kim WH, Lee SH, Chang JM, Cho N, Moon WK. Background echotexture classification in breast ultrasound: inter-observer agreement study. Acta Radiol 2017;58:1427-1433 https://doi.org/10.1177/0284185117695665
- Pashayan N, Antoniou AC, Ivanus U, Esserman LJ, Easton DF, French D, et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol 2020;17:687-705 https://doi.org/10.1038/s41571-020-0388-9
- Kerlikowske K, Grady D, Barclay J, Frankel SD, Ominsky SH, Sickles EA, et al. Variability and accuracy in mammographic interpretation using the American College of Radiology breast imaging reporting and data system. J Natl Cancer Inst 1998;90:1801-1809 https://doi.org/10.1093/jnci/90.23.1801
- Berg WA, Blume JD, Cormack JB, Mendelson EB. Operator dependence of physician-performed whole-breast US: lesion detection and characterization. Radiology 2006;241:355-365 https://doi.org/10.1148/radiol.2412051710
- Melsaether A, McDermott M, Gupta D, Pysarenko K, Shaylor SD, Moy L. Inter- and intrareader agreement for categorization of background parenchymal enhancement at baseline and after training. AJR Am J Roentgenol 2014;203:209-215 https://doi.org/10.2214/AJR.13.10952
- Lee SH, Ryu HS, Jang MJ, Yi A, Ha SM, Kim SY, et al. Glandular tissue component and breast cancer risk in mammographically dense breasts at screening breast US. Radiology 2021;301:57-65 https://doi.org/10.1148/radiol.2021210367
- Kim WH, Moon WK, Kim SJ, Yi A, Yun BL, Cho N, et al. Ultrasonographic assessment of breast density. Breast Cancer Res Treat 2013;138:851-859 https://doi.org/10.1007/s10549-013-2506-1
- Arasu VA, Miglioretti DL, Sprague BL, Alsheik NH, Buist DSM, Henderson LM, et al. Population-based assessment of the association between magnetic resonance imaging background parenchymal enhancement and future primary breast cancer risk. J Clin Oncol 2019;37:954-963 https://doi.org/10.1200/JCO.18.00378
- Kim SH, Kim HH, Moon WK. Automated breast ultrasound screening for dense breasts. Korean J Radiol 2020;21:15-24 https://doi.org/10.3348/kjr.2019.0176
- Chang RF, Hou YL, Lo CM, Huang CS, Chen JH, Kim WH, et al. Quantitative analysis of breast echotexture patterns in automated breast ultrasound images. Med Phys 2015;42:4566-4578 https://doi.org/10.1118/1.4923754
- Yala A, Mikhael PG, Lehman C, Lin G, Strand F, Wan YL, et al. Optimizing risk-based breast cancer screening policies with reinforcement learning. Nat Med 2022;28:136-143 https://doi.org/10.1038/s41591-021-01599-w