DOI QR코드

DOI QR Code

The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines

  • Vu, Thi Hao (Department of Animal Science and Technology, Chung-Ang University) ;
  • Hong, Yeojin (Department of Animal Science and Technology, Chung-Ang University) ;
  • Truong, Anh Duc (Department of Biochemistry and Immunology, National Institute of Veterinary Research) ;
  • Lee, Sooyeon (Department of Animal Science and Technology, Chung-Ang University) ;
  • Heo, Jubi (Department of Animal Science and Technology, Chung-Ang University) ;
  • Lillehoj, Hyun S. (Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture) ;
  • Hong, Yeong Ho (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2021.09.13
  • Accepted : 2021.12.18
  • Published : 2022.07.01

Abstract

Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry and economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for studies on HPAIV resistance. Therefore, in this study, we investigated gene expression related to the mitogen-activated protein kinase (MAPK) signaling pathway by comparing non-infected, HPAI-infected resistant, and susceptible Ri chicken lines. Methods: Resistant (Mx/A; BF2/B21) and susceptible Ri chickens (Mx/G; BF2/B13) were selected by genotyping the Mx and BF2 genes. Then, the tracheal tissues of non-infected and HPAIV H5N1 infected chickens were collected for RNA sequencing. Results: A gene set overlapping test between the analyzed differentially expressed genes (DEGs) and functionally categorized genes was performed, including biological processes of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. A total of 1,794 DEGs were observed between control and H5N1-infected resistant Ri chickens, 432 DEGs between control and infected susceptible Ri chickens, and 1,202 DEGs between infected susceptible and infected resistant Ri chickens. The expression levels of MAPK signaling pathway-related genes (including MyD88, NF-κB, AP-1, c-fos, Jun, JunD, MAX, c-Myc), cytokines (IL-1β, IL-6, IL-8), type I interferons (IFN-α, IFN-β), and IFN-stimulated genes (Mx1, CCL19, OASL, and PRK) were higher in H5N1-infected than in non-infected resistant Ri chickens. MyD88, Jun, JunD, MAX, cytokines, chemokines, IFNs, and IFN-stimulated expressed genes were higher in resistant-infected than in susceptible-infected Ri chickens. Conclusion: Resistant Ri chickens showed higher antiviral activity compared to susceptible Ri chickens, and H5N1-infected resistant Ri chickens had immune responses and antiviral activity (cytokines, chemokines, interferons, and IFN-stimulated genes), which may have been induced through the MAPK signaling pathway in response to H5N1 infection.

Keywords

Acknowledgement

This work was carried out with the support of the "Cooperative Research Program for Agriculture Science and Technology Development" (Project No. PJ015612), Rural Development Administration, Republic of Korea.

References

  1. Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine 2007;25:5637-44. https://doi.org/10.1016/j.vaccine.2006.10.051
  2. OIE. Terrestrial animal health code [Internet]. World Organisation for Animal Health; 2014.
  3. Kabir SML. Avian flu (H5N1): Threat of "global pandemic" is growing and it's impact on the developing countries' economy. Afr J Microbiol Res 2010;4:1192-4. https://doi.org/10.5897/AJMR.9000111
  4. Staeheli P, Pitossi F, Pavlovic J. Mx proteins: GTPases with antiviral activity. Trends Cell Biol 1993;3:268-72. https://doi.org/10.1016/0962-8924(93)90055-6
  5. Seyama T, Ko J, Ohe M, et al. Population research of genetic polymorphism at amino acid position 631 in chicken Mx protein with differential antiviral activity. Biochem Genet 2006;44:432-43. https://doi.org/10.1007/s10528-006-9040-3
  6. Juul-Madsen HR, Dalgaard T, Rontved CM, Jensen KH, Bumstead N. Immune response to a killed infectious bursal disease virus vaccine in inbred chicken lines with different major histocompatibility complex haplotypes. Poult Sci 2006;85:986-98. https://doi.org/10.1093/ps/85.6.986
  7. Boonyanuwat K, Thummabutra S, Sookmanee N, Vatchavalkhu V, Siripholvat V. Influences of major histocompatibility complex class I haplotypes on avian influenza virus disease traits in Thai indigenous chickens. Anim Sci J 2006;77:285-9. https://doi.org/10.1111/j.1740-0929.2006.00350.x
  8. Vu HT, Hong Y, Truong AD, et al. Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines. Anim Biosci 2022;35:367-76. https://doi.org/10.5713/ab.21.0163
  9. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011;75:50-83. https://doi.org/10.1128/MMBR.00031-10
  10. Pan H, Zhang Y, Luo Z, et al. Autophagy mediates avian influenza H5N1 pseudotyped particle-induced lung inflammation through NF-κB and p38 MAPK signaling pathways. Am J Physiol Lung Cell Mol Physiol 2014;306:L183-95. https://doi.org/10.1152/ajplung.00147.2013
  11. Ludwig S, Ehrhardt C, Neumeier ER, et al. Influenza virus-induced AP-1-dependent gene expression requires activation of the JNK signaling pathway. J Biol Chem 2001;276:10990-8. https://doi.org/10.1074/jbc.M009902200
  12. Borgeling Y, Schmolke M, Viemann D, et al. Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection. J Biol Chem 2014;289:13-27. https://doi.org/10.1074/jbc.M113.469239
  13. Hong Y, Truong AD, Lee J, et al. Exosomal miRNA profiling from H5N1 avian influenza virus-infected chickens. BMC Vet Res 2021;52:36. https://doi.org/10.1186/s13567-021-00892-3
  14. Huprikar J, Rabinowitz S. A simplified plaque assay for influenza viruses in Madin-Darby kidney (MDCK) cells. J Virol Methods 1980;1:117-20. https://doi.org/10.1016/0166-0934(80)90020-8
  15. Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 2014;15:182. https://doi.org/10.1186/1471-2105-15-182
  16. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21. https://doi.org/10.1093/bioinformatics/bts635
  17. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 2013;31:46-53. https://doi.org/10.1038/nbt.2450
  18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  19. Karpala AJ, Lowenthal JW, Bean AG. Activation of the TLR3 pathway regulates IFNβ production in chickens. Dev Comp Immunol 2008;32:435-44. https://doi.org/10.1016/j.dci.2007.08.004
  20. Wei L, Jiao P, Yuan R, et al. Goose toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and antiviral molecules involved in anti-H5N1 highly pathogenic avian influenza virus response. Vet Immunol Immunopathol 2013;153:99-106. https://doi.org/10.1016/j.vetimm.2013.02.012
  21. Krischuns T, Gunl F, Henschel L, et al. Phosphorylation of TRIM28 enhances the expression of IFN-β and proinflammatory cytokines during HPAIV infection of human lung epithelial cells. Front Immunol 2018;9:2229. https://doi.org/10.3389/fimmu.2018.02229
  22. Hui KP, Lee SM, Cheung C-y, et al. Induction of proinflammatory cytokines in primary human macrophages by influenza A virus (H5N1) is selectively regulated by IFN regulatory factor 3 and p38 MAPK. J Immunol 2009;182:1088-98. https://doi.org/10.4049/jimmunol.182.2.1088
  23. Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 2008;89:1-47. https://doi.org/10.1099/vir.0.83391-0
  24. Ranaware PB, Mishra A, Vijayakumar P, et al. Genome wide host gene expression analysis in chicken lungs infected with avian influenza viruses. PLoS One 2016;11:e0153671. https://doi.org/10.1371/journal.pone.0153671
  25. De Silva Senapathi U, Abdul-Cader MS, Amarasinghe A, et al. The in ovo delivery of CpG oligonucleotides protects against infectious bronchitis with the recruitment of immune cells into the respiratory tract of chickens. Viruses 2018;10:635. https://doi.org/10.3390/v10110635
  26. Garcia M, Gil J, Ventoso I, et al. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2006;70:1032-60. https://doi.org/10.1128/MMBR.00027-06
  27. Rohaim MA, Santhakumar D, Naggar RFE, et al. Chickens Expressing IFIT5 ameliorate clinical outcome and pathology of highly pathogenic avian influenza and velogenic newcastle disease viruses. Front Immunol 2018;9:2025. https://doi.org/10.3389/fimmu.2018.02025
  28. Wang X, Hinson ER, Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2007;2:96-105. https://doi.org/10.1016/j.chom.2007.06.009
  29. Tag-EL-Din-Hassan HT, Morimatsu M, Agui T. Functional analysis of duck, goose, and ostrich 2'-5'-oligoadenylate synthetase. Infect Genet Evol 2018;62:220-32. https://doi.org/10.1016/j.meegid.2018.04.036
  30. Rong E, Wang X, Chen H, et al. Molecular mechanisms for the adaptive switching between the OAS/RNase L and OASL/RIG-I pathways in birds and mammals. Front Immunol 2018;9:1398. https://doi.org/10.3389/fimmu.2018.01398
  31. Pichlmair A, Lassnig C, Eberle C-A, et al. IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Nat Immunol 2011;12:624-30. https://doi.org/10.1038/ni.2048