DOI QR코드

DOI QR Code

Fast Inter CU Partitioning Algorithm using MAE-based Prediction Accuracy Functions for VVC

MAE 기반 예측 정확도 함수를 이용한 VVC의 고속 화면간 CU 분할 알고리즘

  • Won, Dong-Jae (Department of information and communication engineering, Sejong university) ;
  • Moon, Joo-Hee (Department of information and communication engineering, Sejong university)
  • 원동재 (세종대학교 정보통신공학과) ;
  • 문주희 (세종대학교 정보통신공학과)
  • Received : 2022.03.21
  • Accepted : 2022.04.04
  • Published : 2022.05.30

Abstract

Quaternary tree plus multi-type tree (QT+MTT) structure was adopted in the Versatile Video Coding (VVC) standard as a block partitioning tool. QT+MTT provides excellent coding gain; however, it has huge encoding complexity due to the flexibility of the binary tree (BT) and ternary tree (TT) splits. This paper proposes a fast inter coding unit (CU) partitioning algorithm for BT and TT split types based on prediction accuracy functions using the mean of the absolute error (MAE). The MAE-based decision model was established to achieve a consistent time-saving encoding with stable coding loss for a practical low complexity VVC encoder. Experimental results under random access test configuration showed that the proposed algorithm achieved the encoding time saving from 24.0% to 31.7% with increasing luminance Bjontegaard delta (BD) rate from 1.0% to 2.1%.

VVC(Versatile Video Coding) 표준에서는 블록 분할 기술로써 QT+MTT(Quaternary Tree plus Multi-Type Tree) 분할 구조가 채택되었다. QT+MTT 분할 구조는 우수한 부호화 효율을 제공하지만, BT(Binary Tree)와 TT(Ternary Tree) 분할 타입으로 인한 블록 분할의 확장성 때문에, 전반적인 부호화 복잡도가 크게 증가하였다. 본 논문에서는 MAE(Mean of the Absolute Error)에 기한반 예측 정확도 함수를 이용하여, BT와 TT 분할 타입을 위한 화면간 CU(Coding Unit) 분할 알고리즘의 고속화 기법을 제안한다. 제안하는 고속화 기법은 부호화 복잡도 감소율의 일관성과 안정적이고 낮은 부호화 손실을 통해, 저복잡도 VVC 부호화기 설계 시에 실용적인 방법으로 활용될 수 있다. RA(Random Access) 실험 환경에서 휘도 성분의 BD(Bjontegaard Delta) 비트율은 1.0%~2.1% 증가한 반면에 부호화 시간 복잡도는 24.0%~31.7% 감소시킬 수 있었다.

Keywords

References

  1. B. Bross, J.-R. Ohm, G. J. Sullivan, and Y.-K. Wang, "Developments in international video coding standardization after AVC, with an overview of Versatile Video Coding (VVC)", Proceedings of the IEEE, Vol. 109, No.9, pp.1463-1493, September 2021. doi: https://doi.org/10.1109/JPROC.2020.3043399
  2. G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, "Overview of the High Efficiency Video Coding (HEVC) standard", IEEE Transactions on Circuits and Systems for Video Technology, Vol. 22, No.12, pp.1649-1668, December 2012. doi: https://doi.org/10.1109/TCSVT.2012.2221191
  3. Y.-W. Huang, J. An, H. Huang, X. Li, S.-T. Hsiang, K. Zhang, H. Gao, J. Ma, and O. Chubach, "Block partitioning structure in the VVC standard", IEEE Transactions on Circuits and Systems for Video Technology, Vol. 31, No.10, pp.3818-3833, October 2021. doi: https://doi.org/10.1109/TCSVT.2021.3088134
  4. F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, "JVET common test conditions and software reference configurations for SDR video", Joint Video Experts Team of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-N1010, March 2019.
  5. Q. Zhang, Y. Zhao, B. Jiang, L. Huang, and T. Wei, "Fast CU partition decision method based on texture characteristics for H.266/VVC", IEEE Access, Vol. 8, pp.203516-203524, November 2020. doi: https://doi.org/10.1109/ACCESS.2020.3036858
  6. Y. Li, G. Yang, Y. Song, H. Zhang, X. Ding, and D. Zhang, "Early intra CU size decision for Versatile Video Coding based on a tunable decision model", IEEE Transactions on Broadcasting, Vol. 67, No.3, pp.710-720, September 2021. doi: https://doi.org/10.1109/TBC.2021.3073556
  7. N. Tang, J. Cao, F. Liang, J. Wang, H. Liu, X. Wang, and X. Du, "Fast CTU partition decision algorithm for VVC intra and inter coding", IEEE Asia Pacific Conference on Circuits and Systems, Bangkok, Thailand, November 2019. doi: https://doi.org/10.1109/APCCAS47518.2019.8953076
  8. J. Xiong, H. Li, F. Meng, Q. Wu, and K. N. Ngan, "Fast HEVC inter CU decision based on latent SAD estimation", IEEE Transactions on Multimedia, Vol 17, No.12, pp.2147-2159, December 2015. doi: https://doi.org/10.1109/TMM.2015.2491018
  9. VVC Test Model (VTM) reference software version 11.0, https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tags/VTM-11.0 (accessed Dec. 2020).
  10. H. Gao, S. Esenlik, E. Alshina, and E. Steinbach, "Geometric partitioning mode in Versatile Video Coding: algorithm review and analysis", IEEE Transactions on Circuits and Systems for Video Technology, Vol. 31, No.9, pp.3603-3617, September 2021. doi: https://doi.org/10.1109/TCSVT.2020.3040291
  11. G. Bjontegaard, "Calculation of average PSNR differences between RD-curves", ITU-T SC16/Q6, VCEG-M33, April 2001.