DOI QR코드

DOI QR Code

Feasibility of Pediatric Low-Dose Facial CT Reconstructed with Filtered Back Projection Using Adequate Kernels

필터보정역투영과 적절한 커널을 이용한 소아 저선량 안면 컴퓨터단층촬영의 시행 가능성

  • Hye Ji (Department of Radiology, Chungnam National University Hospital) ;
  • Sun Kyoung You (Department of Radiology, Chungnam National University Hospital, Chungnam National University College of Medicine) ;
  • Jeong Eun Lee (Department of Radiology, Chungnam National University Hospital, Chungnam National University College of Medicine) ;
  • So Mi Lee (Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital) ;
  • Hyun-Hae Cho (Department of Radiology, Ewha Womans University Mokdong Hospital) ;
  • Joon Young Ohm (Department of Radiology, Chungnam National University Hospital)
  • 지혜 (충남대학교병원 영상의학과) ;
  • 유선경 (충남대학교 의과대학 충남대학교병원 영상의학과) ;
  • 이정은 (충남대학교 의과대학 충남대학교병원 영상의학과) ;
  • 이소미 (경북대학교 의과대학 칠곡경북대학교병원 영상의학과) ;
  • 조현혜 (이화여자대학교 목동병원 영상의학과) ;
  • 엄준영 (충남대학교병원 영상의학과)
  • Received : 2021.01.04
  • Accepted : 2021.06.30
  • Published : 2022.05.01

Abstract

Purpose To evaluate the feasibility of pediatric low-dose facial CT reconstructed with filtered back projection (FBP) using adequate kernels. Materials and Methods We retrospectively reviewed the clinical and imaging data of children aged < 10 years who underwent facial CT at our emergency department. The patients were divided into two groups: low-dose CT (LDCT; Group A, n = 73) with a fixed 80-kVp tube potential and automatic tube current modulation (ATCM) and standard-dose CT (SDCT; Group B, n = 40) with a fixed 120-kVp tube potential and ATCM. All images were reconstructed with FBP using bone and soft tissue kernels in Group A and only bone kernel in Group B. The groups were compared in terms of image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Two radiologists subjectively scored the overall image quality of bony and soft tissue structures. The CT dose index volume and dose-length product were recorded. Results Image noise was higher in Group A than in Group B in bone kernel images (p < 0.001). Group A using a soft tissue kernel showed the highest SNR and CNR for all soft tissue structures (all p < 0.001). In the qualitative analysis of bony structures, Group A scores were found to be similar to or higher than Group B scores on comparing bone kernel images. In the qualitative analysis of soft tissue structures, there was no significant difference between Group A using a soft tissue kernel and Group B using a bone kernel with a soft tissue window setting (p > 0.05). Group A showed a 76.9% reduction in radiation dose compared to Group B (3.2 ± 0.2 mGy vs. 13.9 ± 1.5 mGy; p < 0.001). Conclusion The addition of a soft tissue kernel image to conventional CT reconstructed with FBP enables the use of pediatric low-dose facial CT protocol while maintaining image quality.

목적 필터보정역투영(filtered back projection; 이하 FBP)법과 적절한 커널로 재구성된 소아 저선량 안면 컴퓨터단층촬영(이하 CT)의 시행 가능성을 평가하고자 한다. 대상과 방법 응급실에서 안면 CT를 촬영한 10세 이하 환자의 임상 및 영상 데이터를 후향적으로 검토하였다. 환자들을 두 그룹으로 나누었다: 고정된 80 kVp와 자동관전류변조기법을 사용하는 저선량 CT (low-dose CT, 그룹 A, n = 73), 고정된 120 kVp와 자동관전류변조기법을 사용하는 표준 선량 CT (standard-dose CT, 그룹 B, n = 40). 모든 영상은 FBP로 재구성되었다: 그룹 A는 뼈와 연조직 커널을, 그룹 B는 뼈 커널을 이용하였다. 두 그룹의 영상 잡음, 신호대잡음비(signal-to-noise ratio; 이하 SNR), 그리고 대조대잡음비(contrast-to-noise ratio; 이하 CNR)를 비교하였다. 두 명의 영상의학과 의사가 뼈와 연조직의 영상 품질에 대해 주관적으로 점수화하였다. 용적 CT 선량지수(CT dose index volume)와 선량길이곱(dose length product)을 기록하였다. 결과 영상 잡음은 그룹 A가 그룹 B보다 높았다(p < 0.001). 연조직 커널을 사용한 그룹 A 영상에서 가장 높은 SNR과 CNR을 보였다(p < 0.001). 뼈의 정성적 평가에서 뼈 커널 영상들을 비교하면 그룹 A가 그룹 B보다 비슷하거나 높은 점수를 보였다. 연조직의 정성적 평가에서 연조직 커널을 이용한 그룹 A와 뼈 커널에 연조직 창 설정을 이용한 그룹 B 사이에는 통계적으로 유의한 차이가 없었다(p > 0.05). 그룹 A는 그룹 B에 비해 방사선 선량이 76.9% 감소했다(3.2 ± 0.2 mGy vs. 13.9 ± 1.5 mGy, p < 0.001). 결론 연조직 커널 영상을 FBP로 재구성된 전통적인 CT에 추가함으로써 영상 품질을 유지하면서 소아 저선량 안면 CT 프로토콜을 사용할 수 있다.

Keywords

References

  1. Achenbach S, Boehmer K, Pflederer T, Ropers D, Seltmann M, Lell M, et al. Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr 2010;4:110-115 
  2. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 2013;167:700-707 
  3. Zacharias C, Alessio AM, Otto RK, Iyer RS, Philips GS, Swanson JO, et al. CT: strategies to lower radiation dose. AJR Am J Roentgenol 2013;200:950-956 
  4. Czechowski J, Janeczek J, Kelly G, Johansen J. Radiation dose to the lens in sequential and spiral CT of the facial bones and sinuses. Eur Radiol 2001;11:711-713 
  5. Nagayama Y, Oda S, Nakaura T, Tsuji A, Urata J, Furusawa M, et al. Radiation dose reduction at pediatric CT: use of low tube voltage and iterative reconstruction. Radiographics 2018;38:1421-1440 
  6. Gottumukkala RV, Kalra MK, Tabari A, Otrakji A, Gee MS. Advanced CT techniques for decreasing radiation dose, reducing sedation requirements, and optimizing image quality in children. Radiographics 2019;39:709-726 
  7. Lira D, Padole A, Kalra MK, Singh S. Tube potential and CT radiation dose optimization. AJR Am J Roentgenol 2015;204:W4-W10 
  8. Widmann G, Dalla Torre D, Hoermann R, Schullian P, Gassner EM, Bale R, et al. Detection of midfacial and orbital fractures using ultralow dose CT and iterative reconstructions. Proceedings of the European Congress of Radiology-ECR 2015; 2015 Mar 4-8; Vienna: Austria: ECR; 2015:B-1244 
  9. Widmann G, Juranek D, Waldenberger F, Schullian P, Dennhardt A, Hoermann R, et al. Influence of ultralow-dose and iterative reconstructions on the visualization of orbital soft tissues on maxillofacial CT. AJNR Am J Neuroradiol 2017;38:1630-1635 
  10. Widmann G, Bischel A, Stratis A, Bosmans H, Jacobs R, Gassner EM, et al. Spatial and contrast resolution of ultralow dose dentomaxillofacial CT imaging using iterative reconstruction technology. Dentomaxillofac Radiol 2017;46:20160452 
  11. Widmann G, Schullian P, Hoermann R, Gassner EM, Riechelmann H, Bale R, et al. Ultralow dose CT imaging for navigated skull base surgery using ASIR and MBIR-2D and 3D image quality. J Neurol Surg B Skull Base 2014;75:a229 
  12. Widmann G, Dalla Torre D, Hoermann R, Schullian P, Gassner EM, Bale R, et al. Ultralow-dose computed tomography imaging for surgery of midfacial and orbital fractures using ASIR and MBIR. Int J Oral Maxillofac Surg 2015;44:441-446 
  13. Muschelli J. Recommendations for processing head CT data. Front Neuroinform 2019;13:61 
  14. Singh S, Kalra MK, Thrall JH, Mahesh M. Pointers for optimizing radiation dose in head CT protocols. J Am Coll Radiol 2011;8:591-593 
  15. Reshetenko TV, St-Pierre J, Artyushkova K, Rocheleau R, Atanassov P, Bender G, et al. Multianalytical study of the PTFE content local variation of the PEMFC gas diffusion layer. J Electrochem Soc 2013;160:F1305 
  16. Paul J, Krauss B, Banckwitz R, Maentele W, Bauer RW, Vogl TJ. Relationships of clinical protocols and reconstruction kernels with image quality and radiation dose in a 128-slice CT scanner: study with an anthropomorphic and water phantom. Eur J Radiol 2012;81:e699-e703 
  17. Judy PF, Swensson RG. Detection of small focal lesions in CT images: effects of reconstruction filters and visual display windows. Br J Radiol 1985;58:137-145 
  18. Weiss KL, Cornelius RS, Greeley AL, Sun D, Chang IY, Boyce WO, et al. Hybrid convolution kernel: optimized CT of the head, neck, and spine. AJR Am J Roentgenol 2011;196:403-406 
  19. Wang Y, de Bock GH, van Klaveren RJ, van Ooyen P, Tukker W, Zhao Y, et al. Volumetric measurement of pulmonary nodules at low-dose chest CT: effect of reconstruction setting on measurement variability. Eur Radiol 2010;20:1180-1187 
  20. Hooper T, Eccles G, Milliken T, Mathieu-Burry JR, Reed W. Dose reduction in CT imaging for facial bone trauma in adults: a narrative literature review. J Med Radiat Sci 2019;66:122-132 
  21. Sohaib SA, Peppercorn PD, Horrocks JA, Keene MH, Kenyon GS, Reznek RH. The effect of decreasing mAs on image quality and patient dose in sinus CT. Br J Radiol 2001;74:157-161 
  22. Greffier J, Frandon J, Larbi A, Om D, Beregi JP, Pereira F. Noise assessment across two generations of iterative reconstruction algorithms of three manufacturers using bone reconstruction kernel. Diagn Interv Imaging 2019;100:763-770