DOI QR코드

DOI QR Code

Heterogeneously Integrated Thin-film Lithium Niobate Electro-optic Modulator Based on Slot Structure

  • Li, Xiaowei (Department of Electronic Engineering, School of IoT Engineering, Jiangnan University) ;
  • Xu, Yin (Department of Electronic Engineering, School of IoT Engineering, Jiangnan University) ;
  • Huang, Dongmei (Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University) ;
  • Li, Feng (The Hong Kong Polytechnic University Shenzhen Research Institute) ;
  • Zhang, Bo (Department of Electronic Engineering, School of IoT Engineering, Jiangnan University) ;
  • Dong, Yue (Department of Electronic Engineering, School of IoT Engineering, Jiangnan University) ;
  • Ni, Yi (Department of Electronic Engineering, School of IoT Engineering, Jiangnan University)
  • 투고 : 2021.12.29
  • 심사 : 2022.04.22
  • 발행 : 2022.06.25

초록

Electro-optic modulator (EOM) takes a vital role in connecting the electric and optical fields. Here, we present a heterogeneously integrated EOM based on the lithium niobate-on-insulator (LNOI) platform. The key modulation waveguide structure is a field-enhanced slot waveguide formed by embedding silicon nanowires in a thin-film lithium niobate (LN), which is different from the previously reported LN ridge or etchless LN waveguides. Based on such slot structure, optical mode field area is reduced and enhanced electric field in the slot region can interact well with LN material with high Electro-optic (EO) coefficient. Therefore, the improvements in both aspects have positive effects on enhancing the modulation performance. From results, the corresponding EOM by adding such modulation waveguide structure achieves better performance, where the key half-wave-voltage-length product (V𝜋L) and 3 dB EO bandwidth are 1.78 V·cm and 40 GHz under the electrode gap width of only 6 ㎛, respectively. Moreover, Lower V𝜋L can also be achieved. With these characteristics, such field-enhanced waveguide structure could further promote the development of LNOI-based EOM.

키워드

과제정보

The authors thank the funding agencies for supporting the research work.

참고문헌

  1. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, "Recent advances in silicon-based passive and active optical interconnects," Opt. Express 23, 2487-2511 (2015). https://doi.org/10.1364/OE.23.002487
  2. Y. Su, Y. Zhang, C. Qiu, X. Guo, and L. Sun, "Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications," Adv. Mater. Technol. 5, 1901153 (2020). https://doi.org/10.1002/admt.201901153
  3. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000). https://doi.org/10.1109/2944.826874
  4. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, "A fully photonicsbased coherent radar system," Nature 507, 341-345 (2014). https://doi.org/10.1038/nature13078
  5. K.-H. Luo, S. Brauner, C. Eigner, P. R. Sharapova, R. Ricken, T. Meier, H. Herrmann, and C. Silberhorn, "Nonlinear integrated quantum electro-optic circuits," Sci. Adv. 5, eaat1451 (2019). https://doi.org/10.1126/sciadv.aat1451
  6. Z. Zhou, R. Chen, X. Li, and T. Li, "Development trends in silicon photonics for data centers," Opt. Fiber Technol. 44, 13-23 (2018). https://doi.org/10.1016/j.yofte.2018.03.009
  7. Y. Ogiso, J. Ozaki, Y. Ueda, N. Kashio, N. Kikuchi, E. Yamada, H. Tanobe, S. Kanazawa, H. Yamazaki, Y. Ohiso, T. Fujii, and M. Kohtoku, "Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure," J. Light. Technol. 35, 1450-1455 (2017). https://doi.org/10.1109/JLT.2016.2639542
  8. Y. Jiao, J. Tol, V. Pogoretskii, J. Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. Veldhoven, T. Vries, E. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, "Indium phosphide membrane nanophotonic integrated circuits on silicon," Phys. Status Solidi A 217, 1900606 (2020). https://doi.org/10.1002/pssa.201900606
  9. S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, "Femtojoule electro-optic modulation using a silicon-organic hybrid device," Light Sci. Appl. 4, e255 (2015). https://doi.org/10.1038/lsa.2015.28
  10. H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, "High thermal stability 40 GHz electro-optic polymer modulators," Opt. Express 25, 28643-28649 (2018). https://doi.org/10.1364/OE.25.028643
  11. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," Nat. Photonics 4, 518-526 (2010). https://doi.org/10.1038/nphoton.2010.179
  12. M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, "Silicon intensity Mach-Zehnder modulator for single lane 100Gb/s applications," Photonics Res. 6, 109-116 (2018). https://doi.org/10.1364/PRJ.6.000109
  13. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, "High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation," Opt. Express 23, 23072-23078 (2015). https://doi.org/10.1364/OE.23.023072
  14. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, "Nanophotonic lithium niobate electro-optic modulators," Opt. Express 26, 1547-1555 (2018). https://doi.org/10.1364/OE.26.001547
  15. M. Bazzan and C. Sada, "Optical waveguide in lithium niobate: recent developments and applications," Appl. Phys. Rev. 2, 040603 (2015). https://doi.org/10.1063/1.4931601
  16. Y. Jia, L. Wang, and F. Chen, "Ion-cut lithium niobate on insulator technology: recent advances and perspectives," Appl. Phys. Rev. 8, 011307 (2021). https://doi.org/10.1063/5.0037771
  17. D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, and M. Loncar, "Integrated photonics on thin-film lithium niobate," Adv. Opt. Photonics 13, 242-352 (2021). https://doi.org/10.1364/AOP.411024
  18. Y. Qi and Y. Li, "Integrated lithium niobate photonics," Nanophotonics 9, 1287-1320 (2020). https://doi.org/10.1515/nanoph-2020-0013
  19. D. Sun, Y. Zhang, D. Wang, W. Song, X. Liu, J. Pang, D. Geng, Y. Sang, and H. Liu, "Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications," Light Sci. Appl. 9, 197 (2020). https://doi.org/10.1038/s41377-020-00434-0
  20. J. Lin, F. Bo, Y. Cheng, and J. Xu, "Advances in on-chip photonic devices based on lithium niobate on insulator," Photonics Res. 8, 1910-1936 (2020). https://doi.org/10.1364/prj.395305
  21. G. Sinatkas, T. Christopoulos, O. Tsilipakos, and E. E. Kriezis, "Electro-optic modulation in integrated photonics," J. Appl. Phys. 130, 010901 (2021). https://doi.org/10.1063/5.0048712
  22. M. Zhang, C. Wang, P. Kharel, D. Zhu, and M. Loncar, "Integrated lithium niobate electro-optic modulators: when performance meets scalability," Optica 8, 652-667 (2021). https://doi.org/10.1364/OPTICA.415762
  23. S. Sun, M. He, M. Xu, S. Gao, S. Yu, and X. Cai, "Hybrid silicon and lithium niobate modulator," IEEE J. Sel. Top. Quantum Electron. 27, 3300112 (2021).
  24. H. Luo, Z. Chen, H. Li, L. Chen, Y. Han, Z. Lin, S. Yu, and X. Cai, "High-performance polarization splitter-rotator based on lithium niobate-on-insulator platform," IEEE Photonics Technol. Lett. 33, 1423-1426 (2021). https://doi.org/10.1109/LPT.2021.3123101
  25. Z. Chen, J. Yang, W.-H. Wong, E. Y.-B. Pun, and C. Wang, "Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform," Photoncis Res. 9, 2319-2324 (2021). https://doi.org/10.1364/PRJ.432906
  26. J. Wang, P. Chen, D. Dai, and L. Liu, "Polarization coupling of X-cut thin film lithium niobate based waveguide," IEEE Photonics J. 12, 2200310 (2020).
  27. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature 562, 101-104 (2018). https://doi.org/10.1038/s41586-018-0551-y
  28. M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, "High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond," Nat. Photonics 13, 359-364 (2019). https://doi.org/10.1038/s41566-019-0378-6
  29. P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, "Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth," Opt. Express 26, 23728-23739 (2018). https://doi.org/10.1364/oe.26.023728
  30. R. Safian, M. Teng, L. Zhuang, and S. Chakravarty, "Foundry-compatible thin film lithium niobate modulator with RF electrodes buried inside the silicon oxide layer of the SOI wafer," Opt. Express 28, 25843-25857 (2020). https://doi.org/10.1364/oe.396335
  31. P. O. Weigel, F. Valdez, J. Zhao, H. Li, and S. Mookherjea, "Design of high-bandwidth, low-voltage and low-loss hybrid lithium niobate electro-optic modulators," J. Phys. Photonics 3, 012001 (2021). https://doi.org/10.1088/2515-7647/abc17e
  32. N. Boynton, H. Cai, M. Gehl, S. Arterburn, C. Dallo, A. Pomerene, A. Starbuck, D. Hood, D. C. Trotter, T. Friedmann, C. T. DeRose, and A. Lentine, "A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator," Opt. Express 28, 1868-1884 (2020). https://doi.org/10.1364/oe.28.001868
  33. A. Honardoost, F. A. Juneghani, R. Safian, and S. Fathpour, "Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators," Opt. Express 27, 6495-6501 (2019). https://doi.org/10.1364/oe.27.006495
  34. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, "High-performance and linear thinfilm lithium niobate Mach-Zehnder modulators on silicon up to 50GHz," Opt. Lett. 41, 5700-5703 (2016). https://doi.org/10.1364/OL.41.005700
  35. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009). https://doi.org/10.1038/nature07593
  36. L. Cai, Y. Kang, and H. Hu, "Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film," Opt. Express 24, 4640-4647 (2016). https://doi.org/10.1364/OE.24.004640
  37. COMSOL Inc., "COMSOL multiphysics simulation software," (COMSOL), https://www.comsol.com/comsol-multiphysics (Accessed: Oct. 12, 2021).
  38. Ansys Ltd., "Lumerical FDTD Solution," (Ansys), https://www.lumerical.com/products/fdtd (Accessed: Oct. 20, 2021).
  39. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, "Monolithic ultra-high-Q lithium niobate microring resonator," Optica 4, 1536-1537 (2017). https://doi.org/10.1364/OPTICA.4.001536
  40. M. Jeon, S. Yoshiba, and K. Kamisako, "Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique," Curr. Appl. Phys. 10, S237-S240 (2010). https://doi.org/10.1016/j.cap.2009.11.059